IDEAS home Printed from https://ideas.repec.org/r/jae/japmet/v15y2000i5p471-482.html
   My bibliography  Save this item

Tests for multiple forecast encompassing

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
  2. David A. Bessler & Shahriar Kibriya & Junyi Chen & Edwin Price, 2016. "On Forecasting Conflict in the Sudan: 2009–2012," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 179-188, March.
  3. Saša ŽIKOVIÆ & Randall K. FILER, 2013. "Ranking of VaR and ES Models: Performance in Developed and Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(4), pages 327-359, August.
  4. Daniel Andrés Jaimes Cárdenas & Jair Ojeda Joya, 2010. "Reglas de Taylor y previsibilidad fuera de muestra de la tasa de cambio en Latinoamérica," Borradores de Economia 619, Banco de la Republica de Colombia.
  5. Renee van Eyden & Goodness C. Aye & Rangan Gupta, 2012. "Predictive Ability of Competing Models for South Africa’s Fixed Business Non- Residential Investment Spending," Working Papers 201229, University of Pretoria, Department of Economics.
  6. Frommel, Michael & MacDonald, Ronald & Menkhoff, Lukas, 2005. "Markov switching regimes in a monetary exchange rate model," Economic Modelling, Elsevier, vol. 22(3), pages 485-502, May.
  7. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
  8. Christian Gourieroux & Wei Liu, 2009. "Control and Out‐of‐Sample Validation of Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 683-707, September.
  9. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
  10. José Dias Curto & João Tomaz & José Castro Pinto, 2009. "A new approach to bad news effects on volatility: the multiple-sign-volume sensitive regime EGARCH model (MSV-EGARCH)," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 8(1), pages 23-36, April.
  11. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
  12. Zijun Wang, 2010. "Directed graphs, information structure and forecast combinations: an empirical examination of US unemployment rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 353-366.
  13. Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002. "Inflation, forecast intervals and long memory regression models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
  14. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
  15. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
  16. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
  17. Philip Hans Franses, 2011. "Model selection for forecast combination," Applied Economics, Taylor & Francis Journals, vol. 43(14), pages 1721-1727.
  18. Sanders, Dwight R. & Manfredo, Mark R., 2002. "Usda Production Forecasts For Pork, Beef, And Broilers: An Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-14, July.
  19. Manfredo, Mark R. & Richards, Timothy J., 2005. "Hedging Yield with Weather Derivatives: A Role for Options," 2005 Annual meeting, July 24-27, Providence, RI 19369, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  20. Christopher G. Gibbs, 2017. "Forecast combination, non-linear dynamics, and the macroeconomy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 653-686, March.
  21. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-02, Central Bank of Cyprus.
  22. Roccazzella, Francesco & Candelon, Bertrand, 2022. "Should we care about ECB inflation expectations?," LIDAM Discussion Papers LFIN 2022004, Université catholique de Louvain, Louvain Finance (LFIN).
  23. Becker, Ralf & Clements, Adam E. & White, Scott I., 2006. "On the informational efficiency of S&P500 implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 139-153, August.
  24. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
  25. Siliverstovs, B. & van Dijk, D.J.C., 2003. "Forecasting industrial production with linear, nonlinear, and structural change models," Econometric Institute Research Papers EI 2003-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  26. Mark Manfredo & Timothy Richards, 2009. "Hedging with weather derivatives: a role for options in reducing basis risk," Applied Financial Economics, Taylor & Francis Journals, vol. 19(2), pages 87-97.
  27. Harvey, David I. & Leybourne, Stephen J. & Whitehouse, Emily J., 2017. "Forecast evaluation tests and negative long-run variance estimates in small samples," International Journal of Forecasting, Elsevier, vol. 33(4), pages 833-847.
  28. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
  29. Harvey, David I. & Newbold, Paul, 2003. "The non-normality of some macroeconomic forecast errors," International Journal of Forecasting, Elsevier, vol. 19(4), pages 635-653.
  30. Håvard Hungnes, 2020. "Equal predictability test for multi-step-ahead system forecasts invariant to linear transformations," Discussion Papers 931, Statistics Norway, Research Department.
  31. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-2, Central Bank of Cyprus.
  32. Dimitriadis, Timo & Liu, Xiaochun & Schnaitmann, Julie, 2020. "Encompassing tests for value at risk and expected shortfall multi-step forecasts based on inference on the boundary," Hohenheim Discussion Papers in Business, Economics and Social Sciences 11-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
  33. Sanders, Dwight R. & Manfredo, Mark R. & Boris, Keith, 2009. "Evaluating information in multiple horizon forecasts: The DOE's energy price forecasts," Energy Economics, Elsevier, vol. 31(2), pages 189-196.
  34. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223, April.
  35. Glynn Tonsor & Ted Schroeder, 2011. "Multivariate forecasting of a commodity portfolio: application to cattle feeding margins and risk," Applied Economics, Taylor & Francis Journals, vol. 43(11), pages 1329-1339.
  36. Kannika Duangnate & James W. Mjelde, 2020. "Prequential forecasting in the presence of structure breaks in natural gas spot markets," Empirical Economics, Springer, vol. 59(5), pages 2363-2384, November.
  37. Curto, José Dias & Serrasqueiro, Pedro, 2022. "Averaging financial ratios," Finance Research Letters, Elsevier, vol. 48(C).
  38. El-Shagi, Makram, 2011. "Inflation expectations: Does the market beat econometric forecasts?," The North American Journal of Economics and Finance, Elsevier, vol. 22(3), pages 298-319.
  39. Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2012. "Forecast Combination Based on Multiple Encompassing Tests in a Macroeconomic DSGE-VAR System," Economics Series 292, Institute for Advanced Studies.
  40. Bentes, Sónia R., 2015. "A comparative analysis of the predictive power of implied volatility indices and GARCH forecasted volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 105-112.
  41. Mark E. Wohar & David E. Rapach, 2007. "Forecasting the recent behavior of US business fixed investment spending: an analysis of competing models This is a significantly revised version of our previous paper, 'Forecasting US Business Fixed ," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 33-51.
  42. David Bessler & Zijun Wang, 2012. "D-separation, forecasting, and economic science: a conjecture," Theory and Decision, Springer, vol. 73(2), pages 295-314, August.
  43. Timo Dimitriadis & Julie Schnaitmann, 2019. "Forecast Encompassing Tests for the Expected Shortfall," Papers 1908.04569, arXiv.org, revised Aug 2020.
  44. Manfredo, Mark R. & Sanders, Dwight R., 2004. "Forecast Encompassing And Futures Market Efficiency: The Case Of Milk Futures," 2004 Annual meeting, August 1-4, Denver, CO 20267, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  45. Sanders, Dwight R. & Manfredo, Mark R., 2004. "Comparing Hedging Effectiveness: An Application of the Encompassing Principle," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(1), pages 1-14, April.
  46. Manfredo, Mark R. & Sanders, Dwight R., 2003. "Minimum Variance Hedging And The Encompassing Principle: Assessing The Effectiveness Of Futures Hedges," 2003 Annual meeting, July 27-30, Montreal, Canada 22247, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  47. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2016. "What derives the bond portfolio value-at-risk: Information roles of macroeconomic and financial stress factors," SFB 649 Discussion Papers 2016-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  48. Khalaf, Lynda & Saunders, Charles J., 2017. "Monte Carlo forecast evaluation with persistent data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 1-10.
  49. Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
  50. Pedro Pires Ribeiro & José Dias Curto, 2018. "How do zero-coupon inflation swaps predict inflation rates in the euro area? Evidence of efficiency and accuracy on 1-year contracts," Empirical Economics, Springer, vol. 54(4), pages 1451-1475, June.
  51. repec:hum:wpaper:sfb649dp2016-006 is not listed on IDEAS
  52. Sanders, Dwight R. & Manfredo, Mark R., 2004. "Predicting Pork Supplies: An Application of Multiple Forecast Encompassing," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(3), pages 1-11, December.
  53. Håvard Hungnes, 2018. "Encompassing tests for evaluating multi-step system forecasts invariant to linear transformations," Discussion Papers 871, Statistics Norway, Research Department.
  54. Joseph, Andreas & Kalamara, Eleni & Kapetanios, George & Potjagailo, Galina & Chakraborty, Chiranjit, 2021. "Forecasting UK inflation bottom up," Bank of England working papers 915, Bank of England, revised 27 Sep 2022.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.