IDEAS home Printed from https://ideas.repec.org/r/inm/ortrsc/v19y1985i1p29-37.html
   My bibliography  Save this item

The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
  2. Gonzales, Eric J., 2016. "Demand responsive transit systems with time-dependent demand: User equilibrium, system optimum, and management strategyAuthor-Name: Amirgholy, Mahyar," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 234-252.
  3. Carlos F. Daganzo & Reinaldo C. Garcia, 2000. "A Pareto Improving Strategy for the Time-Dependent Morning Commute Problem," Transportation Science, INFORMS, vol. 34(3), pages 303-311, August.
  4. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
  5. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
  6. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
  7. Xiao, Feng & Qian, Zhen (Sean) & Zhang, H. Michael, 2013. "Managing bottleneck congestion with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 1-14.
  8. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
  9. Wuping Xin & David Levinson, 2015. "Stochastic Congestion and Pricing Model with Endogenous Departure Time Selection and Heterogeneous Travelers," Mathematical Population Studies, Taylor & Francis Journals, vol. 22(1), pages 37-52, March.
  10. Gonzales, Eric J. & Daganzo, Carlos F., 2013. "The evening commute with cars and transit: Duality results and user equilibrium for the combined morning and evening peaks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 286-299.
  11. Sun, Xiaoyan & Han, Xiao & Bao, Jian-Zhang & Jiang, Rui & Jia, Bin & Yan, Xiaoyong & Zhang, Boyu & Wang, Wen-Xu & Gao, Zi-You, 2017. "Decision dynamics of departure times: Experiments and modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 74-82.
  12. Ryo Kawasaki & Hideo Konishi & Junki Yukawa, 2023. "Equilibria in bottleneck games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 649-685, September.
  13. Zhang, Michael & Shen, Wei & Nie, Yu & Ma, Jingtao, 2008. "Integrated Construction Zone Traffic Management," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1bd50918, Institute of Transportation Studies, UC Berkeley.
  14. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
  15. Gonzales, Eric J., 2015. "Coordinated pricing for cars and transit in cities with hypercongestion," Economics of Transportation, Elsevier, vol. 4(1), pages 64-81.
  16. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
  17. Wu, Jiyan & Tian, Ye & Sun, Jian & Michael Zhang, H. & Wang, Yunpeng, 2023. "Public or private? Optimal organization for incentive-based travel demand management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
  18. Shen, Wei & Zhang, H.M., 2010. "Pareto-improving ramp metering strategies for reducing congestion in the morning commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 676-696, November.
  19. Wu, Wen-Xiang & Huang, Hai-Jun, 2015. "An ordinary differential equation formulation of the bottleneck model with user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 34-58.
  20. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt7s28n4nj, University of California Transportation Center.
  21. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
  22. Zhu, Zheng & Li, Xinwei & Liu, Wei & Yang, Hai, 2019. "Day-to-day evolution of departure time choice in stochastic capacity bottleneck models with bounded rationality and various information perceptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 168-192.
  23. Daniel, Joseph I, 1995. "Congestion Pricing and Capacity of Large Hub Airports: A Bottleneck Model with Stochastic Queues," Econometrica, Econometric Society, vol. 63(2), pages 327-370, March.
  24. Akamatsu, Takashi & Wada, Kentaro & Hayashi, Shunsuke, 2015. "The corridor problem with discrete multiple bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 808-829.
  25. Iryo, Takamasa, 2019. "Instability of departure time choice problem: A case with replicator dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 353-364.
  26. Fu, Haoran & Akamatsu, Takashi & Satsukawa, Koki & Wada, Kentaro, 2022. "Dynamic traffic assignment in a corridor network: Optimum versus equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 218-246.
  27. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
  28. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
  29. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
  30. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
  31. Takayama, Yuki, 2015. "Bottleneck congestion and distribution of work start times: The economics of staggered work hours revisited," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 830-847.
  32. Fan, Wenbo & Xiao, Feng & Nie, Yu (Macro), 2022. "Managing bottleneck congestion with tradable credits under asymmetric transaction cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
  33. Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.
  34. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
  35. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
  36. Jia, Zehui & Wang, David Z.W. & Cai, Xingju, 2016. "Traffic managements for household travels in congested morning commute," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 173-189.
  37. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2021. "A new look at departure time choice equilibrium models with heterogeneous users," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 152-182.
  38. Doan, Kien & Ukkusuri, Satish & Han, Lanshan, 2011. "On the existence of pricing strategies in the discrete time heterogeneous single bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1483-1500.
  39. Nikolas Geroliminis & David M. Levinson, 2009. "Cordon Pricing Consistent with the Physics of Overcrowding," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 219-240, Springer.
  40. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
  41. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of carpooling on trip costs under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 136-143.
  42. Zhao, Hui & Yan, Xuedong & Gao, Ziyou, 2013. "Transportation serviceability analysis for metropolitan commuting corridors based on modal choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 270-284.
  43. Lago, Alejandro & Daganzo, Carlos F., 2007. "Spillovers, merging traffic and the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 670-683, July.
  44. Liu, Yang & Li, Yuanyuan & Hu, Lu, 2018. "Departure time and route choices in bottleneck equilibrium under risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 774-793.
  45. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
  46. Tang, Tie-Qiao & Yu, Qiang & Yang, Shi-Chun & Ding, Chuan, 2015. "Impacts of the vehicle’s fuel consumption and exhaust emissions on the trip cost allowing late arrival under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 52-62.
  47. Osawa, Minoru & Fu, Haoran & Akamatsu, Takashi, 2018. "First-best dynamic assignment of commuters with endogenous heterogeneities in a corridor network," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 811-831.
  48. Di Huang & Weiping Tong & Lumeng Wang & Xun Yang, 2019. "An Analytical Model for the Many-to-One Demand Responsive Transit Systems," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
  49. Lago, Alejandro & Daganzo, Carlos F., 2003. "A Network Model of Departure Time Choice with Spillovers and Merging Effects. Part I: Building Block," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1rw9v116, Institute of Transportation Studies, UC Berkeley.
  50. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
  51. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
  52. Kuwahara, Masao, 2007. "A theory and implications on dynamic marginal cost," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 627-643, August.
  53. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
  54. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt07x7h9pg, University of California Transportation Center.
  55. Leng, Jun-Qiang & Zhao, Lin, 2017. "Analysis of electric vehicle’s trip cost without late arrival," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 761-766.
  56. Wu, Jiyan & Tian, Ye & Sun, Jian, 2023. "Managing ridesharing with incentives in a bottleneck model," Research in Transportation Economics, Elsevier, vol. 101(C).
  57. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
  58. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
  59. Leng, Jun-Qiang & Liu, Wei-Yi & Zhao, Lin, 2017. "Analysis of electric vehicle’s trip cost allowing late arrival," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 293-300.
  60. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2018. "Departure time choice equilibrium and optimal transport problems," MPRA Paper 90361, University Library of Munich, Germany.
  61. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.
  62. Lamotte, Raphaël & Geroliminis, Nikolas, 2018. "The morning commute in urban areas with heterogeneous trip lengths," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 794-810.
  63. Zhang, Fangni & Liu, Wei & Wang, Xiaolei & Yang, Hai, 2017. "A new look at the morning commute with household shared-ride: How does school location play a role?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 198-217.
  64. Nicolas Coulombel & André De Palma, 2014. "Variability of Travel Time, Congestion, and the Cost of Travel," Mathematical Population Studies, Taylor & Francis Journals, vol. 21(4), pages 220-242, December.
  65. R. Lamotte & A. de Palma & N. Geroliminis, 2020. "Impacts of Metering-Based Dynamic Priority Schemes," THEMA Working Papers 2020-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  66. Liu, Wei & Zhang, Fangni & Yang, Hai, 2017. "Modeling and managing morning commute with both household and individual travels," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 227-247.
  67. Tian, Qiong & Liu, Peng & Ong, Ghim Ping & Huang, Hai-Jun, 2021. "Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
  68. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
  69. Sun, Jian & Wu, Jiyan & Xiao, Feng & Tian, Ye & Xu, Xiangdong, 2020. "Managing bottleneck congestion with incentives," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 143-166.
  70. Gonzales, Eric J. & Daganzo, Carlos F., 2011. "Morning Commute with Competing Modes and DistributedDemand: User Equilibrium, System Optimum, and Pricing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0ft1z2ps, Institute of Transportation Studies, UC Berkeley.
  71. Nasimeh Heydaribeni & Ketan Savla, 2021. "Information Design for a Non-atomic Service Scheduling Game," Papers 2110.00090, arXiv.org.
  72. Wen-Long Jin, 2020. "Stable Day-to-Day Dynamics for Departure Time Choice," Transportation Science, INFORMS, vol. 54(1), pages 42-61, January.
  73. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
  74. Otsubo, Hironori & Rapoport, Amnon, 2008. "Vickrey's model of traffic congestion discretized," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 873-889, December.
  75. Ran, Bin & Hall, Randolph & Boyce, David E., 1995. "A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt84t190b3, Institute of Transportation Studies, UC Berkeley.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.