IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v49y2001i5p710-719.html
   My bibliography  Save this item

Performance of Bucket Brigades When Work Is Stochastic

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bentefouet, Frank & Nembhard, David A., 2013. "Optimal flow-line conditions with worker variability," International Journal of Production Economics, Elsevier, vol. 141(2), pages 675-684.
  2. Kim, T.Y., 2018. "Improving warehouse responsiveness by job priority management," Econometric Institute Research Papers EI 2018-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  3. Armbruster, Dieter & Gel, Esma S. & Murakami, Junko, 2007. "Bucket brigades with worker learning," European Journal of Operational Research, Elsevier, vol. 176(1), pages 264-274, January.
  4. Sennott, Linn I. & Van Oyen, Mark P. & Iravani, Seyed M.R., 2006. "Optimal dynamic assignment of a flexible worker on an open production line with specialists," European Journal of Operational Research, Elsevier, vol. 170(2), pages 541-566, April.
  5. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2015. "Quantifying picker blocking in a bucket brigade order picking system," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 862-873.
  6. Sigrún Andradóttir & Hayriye Ayhan, 2005. "Throughput Maximization for Tandem Lines with Two Stations and Flexible Servers," Operations Research, INFORMS, vol. 53(3), pages 516-531, June.
  7. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
  8. Petersen, Charles G. & Aase, Gerald, 2004. "A comparison of picking, storage, and routing policies in manual order picking," International Journal of Production Economics, Elsevier, vol. 92(1), pages 11-19, November.
  9. Nilay Tanık Argon & Sigrún Andradóttir, 2017. "Pooling in tandem queueing networks with non-collaborative servers," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 345-377, December.
  10. Soondo Hong, 2018. "The effects of picker-oriented operational factors on hand-off delay in a bucket brigade order picking system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 781-808, July.
  11. Chiang, Wen-Chyuan & Urban, Timothy L., 2006. "The stochastic U-line balancing problem: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1767-1781, December.
  12. Yun Fong Lim & Bingnan Lu & Rowan Wang & Wenjia Zhang, 2020. "Flexibly Serving A Finite Number of Heterogeneous Jobs in A Tandem System," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1431-1447, June.
  13. van Zelst, Susan & van Donselaar, Karel & van Woensel, Tom & Broekmeulen, Rob & Fransoo, Jan, 2009. "Logistics drivers for shelf stacking in grocery retail stores: Potential for efficiency improvement," International Journal of Production Economics, Elsevier, vol. 121(2), pages 620-632, October.
  14. Kim, T.Y., 2018. "Improving warehouse responsiveness by job priority management," Econometric Institute Research Papers EI2018-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  15. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
  16. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
  17. Xiaoqiang Cai & Xian Zhou, 2004. "Deterministic and stochastic scheduling with teamwork tasks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 818-840, September.
  18. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2007. "Compensating for Failures with Flexible Servers," Operations Research, INFORMS, vol. 55(4), pages 753-768, August.
  19. Peng Wang & Kai Pan & Zhenzhen Yan & Yun Fong Lim, 2022. "Managing Stochastic Bucket Brigades on Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 358-373, January.
  20. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
  21. Donald D. Eisenstein, 2008. "Analysis and optimal design of discrete order picking technologies along a line," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 350-362, June.
  22. Li, Dongni & Lyu, Yao & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2024. "Order sequencing for a bucket brigade seru in a mass customization environment," International Journal of Production Economics, Elsevier, vol. 270(C).
  23. S.M.R. Iravani & J.A. Buzacott & M.J.M. Posner, 2005. "A robust policy for serial agile production systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 58-73, February.
  24. Armbruster, Dieter & Gel, Esma S., 2006. "Bucket brigades revisited: Are they always effective?," European Journal of Operational Research, Elsevier, vol. 172(1), pages 213-229, July.
  25. Bartholdi III, John J. & Eisenstein, Donald D. & Lim, Yun Fong, 2006. "Bucket brigades on in-tree assembly networks," European Journal of Operational Research, Elsevier, vol. 168(3), pages 870-879, February.
  26. Yi‐Chun Tsai & Nilay Tanık Argon, 2008. "Dynamic server assignment policies for assembly‐type queues with flexible servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 234-251, April.
  27. Yun Fong Lim, 2011. "TECHNICAL NOTE---Cellular Bucket Brigades," Operations Research, INFORMS, vol. 59(6), pages 1539-1545, December.
  28. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
  29. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2012. "Flexible Servers in Understaffed Tandem Lines," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 761-777, July.
  30. Wallace J. Hopp & Seyed M.R. Iravani & Biying Shou & Robert Lien, 2009. "Design and control of agile automated CONWIP production lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 42-56, February.
  31. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
  32. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
  33. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
  34. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.