IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v37y1989i6p893-901.html
   My bibliography  Save this item

Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. M Carey, 2009. "A framework for user equilibrium dynamic traffic assignment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 395-410, March.
  2. Lam, William H. K. & Yin, Yafeng, 2001. "An activity-based time-dependent traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 549-574, July.
  3. Moore, II, James E. & Kim, Geunyoung & Cho, Seongdil & Hu, Hsi-hwa & Xu, Rong, 1997. "Evaluating System ATMIS Technologies Via Rapid Estimation Of Network Flows: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5c70f3d9, Institute of Transportation Studies, UC Berkeley.
  4. Kachroo, Pushkin & Özbay, Kaan, 1998. "Solution to the user equilibrium dynamic traffic routing problem using feedback linearization," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 343-360, June.
  5. Daoli Zhu & Patrice Marcotte, 2000. "On the Existence of Solutions to the Dynamic User Equilibrium Problem," Transportation Science, INFORMS, vol. 34(4), pages 402-414, November.
  6. Ozbay, Kaan & Bartin, Bekir, 2004. "Estimation Of Economic Impact Of Vms Route Guidance Using Microsimulation," Research in Transportation Economics, Elsevier, vol. 8(1), pages 215-241, January.
  7. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
  8. S. Waller & Athanasios Ziliaskopoulos, 2006. "A Combinatorial user optimal dynamic traffic assignment algorithm," Annals of Operations Research, Springer, vol. 144(1), pages 249-261, April.
  9. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part II: Numerical analysis and computation," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 75-93.
  10. Jiancheng Long & Hai-Jun Huang & Ziyou Gao & W. Y. Szeto, 2013. "An Intersection-Movement-Based Dynamic User Optimal Route Choice Problem," Operations Research, INFORMS, vol. 61(5), pages 1134-1147, October.
  11. Duong Viet Thong & Aviv Gibali & Mathias Staudigl & Phan Tu Vuong, 2021. "Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters," Networks and Spatial Economics, Springer, vol. 21(3), pages 735-768, September.
  12. Nie, Yu (Marco), 2011. "A cell-based Merchant-Nemhauser model for the system optimum dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 329-342, February.
  13. Ukkusuri, Satish V. & Han, Lanshan & Doan, Kien, 2012. "Dynamic user equilibrium with a path based cell transmission model for general traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1657-1684.
  14. Laporte, Gilbert & Mesa, Juan A. & Perea, Federico, 2010. "A game theoretic framework for the robust railway transit network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 447-459, May.
  15. Ludovic Leclercq & Mahendra Paipuri, 2019. "Macroscopic Traffic Dynamics Under Fast-Varying Demand," Transportation Science, INFORMS, vol. 53(6), pages 1526-1545, November.
  16. Ding, Zhongjun & Chen, Bokui & Zhang, Lele & Jiang, Rui & Wu, Yao & Ding, Jianxun, 2019. "Segment travel time route guidance strategy in advanced traveler information systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  17. Li, Jun & Fujiwara, Okitsugu & Kawakami, Shogo, 2000. "A reactive dynamic user equilibrium model in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 605-624, November.
  18. Carey, Malachy & Subrahmanian, Eswaran, 2000. "An approach to modelling time-varying flows on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(3), pages 157-183, April.
  19. Chen, Huey-Kuo & Hsueh, Che-Fu, 1998. "A model and an algorithm for the dynamic user-optimal route choice problem," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 219-234, April.
  20. Han, Sangjin, 2007. "A route-based solution algorithm for dynamic user equilibrium assignments," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1094-1113, December.
  21. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
  22. Wie, Byung-Wook & Tobin, Roger L., 1998. "Dynamic congestion pricing models for general traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 313-327, June.
  23. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
  24. Chow, Andy H.F., 2009. "Properties of system optimal traffic assignment with departure time choice and its solution method," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 325-344, March.
  25. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
  26. Byung-Wook Wie, 1995. "A differential game approach to the dynamic mixed behavior traffic network equilibrium problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 117-136, May.
  27. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
  28. Y. W. Xu & J. H. Wu & M. Florian & P. Marcotte & D. L. Zhu, 1999. "Advances in the Continuous Dynamic Network Loading Problem," Transportation Science, INFORMS, vol. 33(4), pages 341-353, November.
  29. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
  30. Como, Giacomo & Lovisari, Enrico & Savla, Ketan, 2016. "Convexity and robustness of dynamic traffic assignment and freeway network control," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 446-465.
  31. Chai, Huajun, 2019. "Dynamic Traffic Routing and Adaptive Signal Control in a Connected Vehicles Environment," Institute of Transportation Studies, Working Paper Series qt9ng3z8vn, Institute of Transportation Studies, UC Davis.
  32. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 99-118.
  33. Kuwahara, Masao & Akamatsu, Takashi, 1997. "Decomposition of the reactive dynamic assignments with queues for a many-to-many origin-destination pattern," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 1-10, February.
  34. Han, S. & Heydecker, B.G., 2006. "Consistent objectives and solution of dynamic user equilibrium models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 16-34, January.
  35. Lu, Chung-Cheng & Liu, Jiangtao & Qu, Yunchao & Peeta, Srinivas & Rouphail, Nagui M. & Zhou, Xuesong, 2016. "Eco-system optimal time-dependent flow assignment in a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 217-239.
  36. Sheu, Jiuh-Biing, 2006. "A composite traffic flow modeling approach for incident-responsive network traffic assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 461-478.
  37. Ran, Bin & Boyce, David E., 1995. "Ideal Dynamic User-Optimal Route Choice: A Link-Based Variational Inequality Formulation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3t4686x6, Institute of Transportation Studies, UC Berkeley.
  38. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Steady-state link travel time methods: Formulation, derivation, classification, and unification," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 167-191.
  39. Leclercq, Ludovic & Sénécat, Alméria & Mariotte, Guilhem, 2017. "Dynamic macroscopic simulation of on-street parking search: A trip-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 268-282.
  40. Han, Lanshan & Ukkusuri, Satish & Doan, Kien, 2011. "Complementarity formulations for the cell transmission model based dynamic user equilibrium with departure time choice, elastic demand and user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1749-1767.
  41. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
  42. Duanmu, Jun & Chowdhury, Mashrur & Taaffe, Kevin & Jordan, Craig, 2012. "Buffering in evacuation management for optimal traffic demand distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 684-700.
  43. Lam, William H. K. & Huang, Hai-Jun, 1995. "Dynamic user optimal traffic assignment model for many to one travel demand," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 243-259, August.
  44. Zhang, Pinchao & Qian, Sean, 2020. "Path-based system optimal dynamic traffic assignment: A subgradient approach," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 41-63.
  45. Xinhua Mao & Jianwei Wang & Changwei Yuan & Wei Yu & Jiahua Gan, 2018. "A Dynamic Traffic Assignment Model for the Sustainability of Pavement Performance," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
  46. Li-Jun Tian & Hai-Jun Huang & Zi-You Gao, 2012. "A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time," Networks and Spatial Economics, Springer, vol. 12(4), pages 589-608, December.
  47. Long, Jiancheng & Szeto, W.Y. & Du, Jie & Wong, R.C.P., 2017. "A dynamic taxi traffic assignment model: A two-level continuum transportation system approach," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 222-254.
  48. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
  49. Luo, Shiaw-Shyan & Wang, Chung-Yung & Sung, Yi-Wei, 2018. "Time-dependent trip-chain link travel time estimation model with the first-in–first-out constraint," European Journal of Operational Research, Elsevier, vol. 267(2), pages 415-427.
  50. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
  51. Zhao, Chuan-Lin & Leclercq, Ludovic, 2018. "Graphical solution for system optimum dynamic traffic assignment with day-based incentive routing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 87-100.
  52. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
  53. Kaufman, David E. & Nonis, Jason & Smith, Robert L., 1998. "A mixed integer linear programming model for dynamic route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 431-440, August.
  54. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "Existence of simultaneous route and departure choice dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 17-30.
  55. Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
  56. Wen-Long Jin, 2021. "A Link Queue Model of Network Traffic Flow," Transportation Science, INFORMS, vol. 55(2), pages 436-455, March.
  57. Kachani, Soulaymane & Perakis, Georgia, 2006. "Fluid dynamics models and their applications in transportation and pricing," European Journal of Operational Research, Elsevier, vol. 170(2), pages 496-517, April.
  58. N. Nezamuddin & Stephen Boyles, 2015. "A Continuous DUE Algorithm Using the Link Transmission Model," Networks and Spatial Economics, Springer, vol. 15(3), pages 465-483, September.
  59. Paipuri, Mahendra & Leclercq, Ludovic, 2020. "Bi-modal macroscopic traffic dynamics in a single region," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 257-290.
  60. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.