IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v44y1998i2p262-275.html
   My bibliography  Save this item

Guided Local Search with Shifting Bottleneck for Job Shop Scheduling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
  2. Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
  3. Susana Fernandes & Helena Ramalhinho-Lourenço, 2007. "A simple optimised search heuristic for the job-shop scheduling problem," Economics Working Papers 1050, Department of Economics and Business, Universitat Pompeu Fabra.
  4. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
  5. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
  6. Mukherjee, Saral & Chatterjee, A.K., 2006. "Applying machine based decomposition in 2-machine flow shops," European Journal of Operational Research, Elsevier, vol. 169(3), pages 723-741, March.
  7. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
  8. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
  9. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
  10. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
  11. J. Christopher Beck & T. K. Feng & Jean-Paul Watson, 2011. "Combining Constraint Programming and Local Search for Job-Shop Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 1-14, February.
  12. Bertsimas, Dimitris & Gupta, Shubham & Lulli, Guglielmo, 2014. "Dynamic resource allocation: A flexible and tractable modeling framework," European Journal of Operational Research, Elsevier, vol. 236(1), pages 14-26.
  13. Kurowski, Krzysztof & Pecyna, Tomasz & Slysz, Mateusz & Różycki, Rafał & Waligóra, Grzegorz & Wȩglarz, Jan, 2023. "Application of quantum approximate optimization algorithm to job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 310(2), pages 518-528.
  14. Murovec, Bostjan & Suhel, Peter, 2004. "A repairing technique for the local search of the job-shop problem," European Journal of Operational Research, Elsevier, vol. 153(1), pages 220-238, February.
  15. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
  16. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
  17. Mati, Yazid & Dauzère-Pérès, Stèphane & Lahlou, Chams, 2011. "A general approach for optimizing regular criteria in the job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 212(1), pages 33-42, July.
  18. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
  19. Murovec, Boštjan, 2015. "Job-shop local-search move evaluation without direct consideration of the criterion’s value," European Journal of Operational Research, Elsevier, vol. 241(2), pages 320-329.
  20. Paolo Detti & Carlo Meloni & Marco Pranzo, 2007. "Local search algorithms for finding the Hamiltonian completion number of line graphs," Annals of Operations Research, Springer, vol. 156(1), pages 5-24, December.
  21. Stefan Voßs & Andreas Fink & Cees Duin, 2005. "Looking Ahead with the Pilot Method," Annals of Operations Research, Springer, vol. 136(1), pages 285-302, April.
  22. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
  23. Mukherjee, Saral & Chatterjee, A.K., 2007. "On the representation of the one machine sequencing problem in the shifting bottleneck heuristic," European Journal of Operational Research, Elsevier, vol. 182(1), pages 475-479, October.
  24. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
  25. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
  26. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
  27. Chong Peng & Guanglin Wu & T Warren Liao & Hedong Wang, 2019. "Research on multi-agent genetic algorithm based on tabu search for the job shop scheduling problem," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
  28. Stutzle, Thomas, 2006. "Iterated local search for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1519-1539, November.
  29. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.