IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v21y1974i1p60-67.html
   My bibliography  Save this item

Optimal Sequential Assignments with Random Arrival Times

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. David T. Wu & Sheldon M. Ross, 2015. "A stochastic assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(1), pages 23-31, February.
  2. Georgy Yu. Sofronov, 2020. "An Optimal Double Stopping Rule for a Buying-Selling Problem," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 1-12, March.
  3. Gershkov, Alex & Moldovanu, Benny, 2010. "Efficient sequential assignment with incomplete information," Games and Economic Behavior, Elsevier, vol. 68(1), pages 144-154, January.
  4. Anna Krasnosielska-Kobos & Elżbieta Ferenstein, 2013. "Construction of Nash Equilibrium in a Game Version of Elfving’s Multiple Stopping Problem," Dynamic Games and Applications, Springer, vol. 3(2), pages 220-235, June.
  5. Sofronov, Georgy, 2013. "An optimal sequential procedure for a multiple selling problem with independent observations," European Journal of Operational Research, Elsevier, vol. 225(2), pages 332-336.
  6. Meghan Shanks & Ge Yu & Sheldon H. Jacobson, 2023. "Approximation algorithms for stochastic online matching with reusable resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 43-56, August.
  7. Dirk Bergemann & Maher Said, 2010. "Dynamic Auctions: A Survey," Levine's Working Paper Archive 661465000000000035, David K. Levine.
  8. Hak Chun, Young, 1996. "Selecting the best choice in the weighted secretary problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 135-147, July.
  9. Dinard van der Laan & Zaifu Yang, 2019. "Efficient Sequential Assignments with Randomly Arriving Multi-Item Demand Agents," Discussion Papers 19/13, Department of Economics, University of York.
  10. Tianke Feng & Joseph C. Hartman, 2015. "The dynamic and stochastic knapsack Problem with homogeneous‐sized items and postponement options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 267-292, June.
  11. David, Israel & Levi, Ofer, 2001. "Asset-selling problems with holding costs," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 317-321, May.
  12. Alexander G. Nikolaev & Sheldon H. Jacobson, 2010. "Technical Note ---Stochastic Sequential Decision-Making with a Random Number of Jobs," Operations Research, INFORMS, vol. 58(4-part-1), pages 1023-1027, August.
  13. Yizhaq Minchuk & Aner Sela, 2018. "Asymmetric sequential search under incomplete information," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 27(2), pages 315-325, June.
  14. Arash Khatibi & Sheldon H. Jacobson, 2016. "Doubly Stochastic Sequential Assignment Problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 124-137, March.
  15. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
  16. David, Israel & Levi, Ofer, 2004. "A new algorithm for the multi-item exponentially discounted optimal selection problem," European Journal of Operational Research, Elsevier, vol. 153(3), pages 782-789, March.
  17. C G Lennon & J M McGowan & K Y Lin, 2008. "A game-theoretic model for repeated assignment problem between two selfish agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1652-1658, December.
  18. , & , & ,, 2011. "Revenue maximization in the dynamic knapsack problem," Theoretical Economics, Econometric Society, vol. 6(2), May.
  19. Sheldon Ross & David Wu, 2013. "A generalized coupon collecting model as a parsimonious optimal stochastic assignment model," Annals of Operations Research, Springer, vol. 208(1), pages 133-146, September.
  20. moldovanu, benny & Gershkov, Alex, 2007. "The Dynamic Assignment of Heterogenous Objects: A Mechanism Design Approach," CEPR Discussion Papers 6439, C.E.P.R. Discussion Papers.
  21. Hwa‐Ming Yang, 1987. "Optimal selection of the t best of a sequence with sampling cost," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(2), pages 281-292, April.
  22. Francis Bloch & Nicolas Houy, 2012. "Optimal assignment of durable objects to successive agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 51(1), pages 13-33, September.
  23. Anton J. Kleywegt & Jason D. Papastavrou, 1998. "The Dynamic and Stochastic Knapsack Problem," Operations Research, INFORMS, vol. 46(1), pages 17-35, February.
  24. Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.
  25. Georgy Sofronov, 2020. "An Optimal Decision Rule for a Multiple Selling Problem with a Variable Rate of Offers," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
  26. Sheldon M. Ross & Gideon Weiss & Zhengyu Zhang, 2021. "Technical Note—A Stochastic Assignment Problem with Unknown Eligibility Probabilities," Operations Research, INFORMS, vol. 69(1), pages 266-272, January.
  27. Gershkov, Alex & Moldovanu, Benny, 2012. "Dynamic allocation and pricing: A mechanism design approach," International Journal of Industrial Organization, Elsevier, vol. 30(3), pages 283-286.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.