My bibliography
Save this item
Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- John M. Rose & Michiel C.J. Bliemer, 2014. "Stated choice experimental design theory: the who, the what and the why," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 7, pages 152-177, Edward Elgar Publishing.
- Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016.
"An integrated algorithm for the optimal design of stated choice experiments with partial profiles,"
Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
- CUERVO, Daniel Palhazi & KESSELS, Roselinde & GOOS, Peter & SÖRENSEN, Kenneth, 2015. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Working Papers 2015004, University of Antwerp, Faculty of Business and Economics.
- Kessels, Roselinde, 2016. "Homogeneous versus heterogeneous designs for stated choice experiments: Ain't homogeneous designs all bad?," Journal of choice modelling, Elsevier, vol. 21(C), pages 2-9.
- Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
- van Cranenburgh, Sander & Rose, John M. & Chorus, Caspar G., 2018. "On the robustness of efficient experimental designs towards the underlying decision rule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 50-64.
- Aiste Ruseckaite & Peter Goos & Dennis Fok, 2017.
"Bayesian D-optimal choice designs for mixtures,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 363-386, February.
- Aiste Ruseckaite & Peter Goos & Dennis Fok, 2014. "Bayesian D-Optimal Choice Designs for Mixtures," Tinbergen Institute Discussion Papers 14-057/III, Tinbergen Institute.
- Chang Wang & Dries Goossens & Martina Vandebroek, 2018. "The Impact of the Soccer Schedule on TV Viewership and Stadium Attendance," Journal of Sports Economics, , vol. 19(1), pages 82-112, January.
- Bart Vermeulen & Peter Goos & Riccardo Scarpa & Martina Vandebroek, 2011. "Bayesian Conjoint Choice Designs for Measuring Willingness to Pay," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 129-149, January.
- Denis Sauré & Juan Pablo Vielma, 2019. "Ellipsoidal Methods for Adaptive Choice-Based Conjoint Analysis," Operations Research, INFORMS, vol. 67(2), pages 315-338, March.
- KESSELS, Roselinde & BRADLEY, Jones & GOOS, Peter, 2012. "A comparison of partial profile designs for discrete choice experiments with an application in software development," Working Papers 2012004, University of Antwerp, Faculty of Business and Economics.
- Raphael Thomadsen & Robert P. Rooderkerk & On Amir & Neeraj Arora & Bryan Bollinger & Karsten Hansen & Leslie John & Wendy Liu & Aner Sela & Vishal Singh & K. Sudhir & Wendy Wood, 2018. "How Context Affects Choice," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 3-14, March.
- Apurba Shee & Calum G. Turvey & Ana Marr, 2021.
"Heterogeneous Demand and Supply for an Insurance‐linked Credit Product in Kenya: A Stated Choice Experiment Approach,"
Journal of Agricultural Economics, Wiley Blackwell, vol. 72(1), pages 244-267, February.
- Shee, Apurba & Turvey, Calum G. & Marr, Ana, 2019. "Heterogeneous Demand and Supply for an Insurance-Linked Credit Product in Kenya: A Stated Choice Experiment Approach," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 291022, Agricultural and Applied Economics Association.
- Shee, Apurba & Turvey, Calum G. & Marr, Ana, 2020. "Heterogeneous demand and supply for an insurance-linked credit product in Kenya: A stated choice experiment approach," Greenwich Papers in Political Economy 29186, University of Greenwich, Greenwich Political Economy Research Centre.
- Danaf, Mazen & Atasoy, Bilge & de Azevedo, Carlos Lima & Ding-Mastera, Jing & Abou-Zeid, Maya & Cox, Nathaniel & Zhao, Fang & Ben-Akiva, Moshe, 2019. "Context-aware stated preferences with smartphone-based travel surveys," Journal of choice modelling, Elsevier, vol. 31(C), pages 35-50.
- Hillebrand, Sebastian & Teichert, Thorsten, 2020. "Successor selection in times of continuity and renewal - A discrete choice-experiment," WiSo-HH Working Paper Series 59, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- Timo Fischer & Gaétan de Rassenfosse, 2011. "Debt Financing of High-growth Startups," DRUID Working Papers 11-04, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
- Rossella Berni & Fabrizia Mealli, 2013. "Mode choice analysis of mobility in Florence. A choice experiment," Studi e approfondimenti 328, Istituto Regionale per la Programmazione Economica della Toscana.
- Fischer, Timo & Henkel, Joachim, 2013. "Complements and substitutes in profiting from innovation—A choice experimental approach," Research Policy, Elsevier, vol. 42(2), pages 326-339.
- Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
- Nedka Dechkova Nikiforova & Rossella Berni & Jesús Fernando López‐Fidalgo, 2022. "Optimal approximate choice designs for a two‐step coffee choice, taste and choice again experiment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1895-1917, November.
- Andreas Falke & Harald Hruschka, 2017. "Setting prices in mixed logit model designs," Marketing Letters, Springer, vol. 28(1), pages 139-154, March.
- Hoenig, Daniel & Henkel, Joachim, 2015. "Quality signals? The role of patents, alliances, and team experience in venture capital financing," Research Policy, Elsevier, vol. 44(5), pages 1049-1064.
- Rossella Berni & Nedka Dechkova Nikiforova & Patrizia Pinelli, 2024. "An Optimal Design through a Compound Criterion for Integrating Extra Preference Information in a Choice Experiment: A Case Study on Moka Ground Coffee," Stats, MDPI, vol. 7(2), pages 1-16, June.
- John Rose & Michiel Bliemer, 2013. "Sample size requirements for stated choice experiments," Transportation, Springer, vol. 40(5), pages 1021-1041, September.
- Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
- Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
- Crabbe, M. & Vandebroek, M., 2012. "Improving the efficiency of individualized designs for the mixed logit choice model by including covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2059-2072.
- Frischknecht, Bart D. & Eckert, Christine & Geweke, John & Louviere, Jordan J., 2014. "A simple method for estimating preference parameters for individuals," International Journal of Research in Marketing, Elsevier, vol. 31(1), pages 35-48.
- Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
- Crabbe, Marjolein & Akinc, Deniz & Vandebroek, Martina, 2014. "Fast algorithms to generate individualized designs for the mixed logit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 1-15.
- Falke Andreas & Hruschka Harald, 2016. "A Monte Carlo Study of Design Procedures for the Semi-parametric Mixed Logit Model," Review of Marketing Science, De Gruyter, vol. 14(1), pages 21-67, June.
- Andreas Falke & Harald Hruschka, 2017. "A Monte Carlo study of design-generating algorithms for the latent class mixed logit model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1035-1053, October.