IDEAS home Printed from https://ideas.repec.org/r/inm/ormksc/v23y2004i3p419-428.html
   My bibliography  Save this item

From Density to Destiny: Using Spatial Dimension of Sales Data for Early Prediction of New Product Success

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liu, Zhuping & Duan, Jason A & Mahajan, Vijay, 2020. "Dynamics and peer effects of brand revenue in college sports," International Journal of Research in Marketing, Elsevier, vol. 37(4), pages 756-771.
  2. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
  3. David Bell & Sangyoung Song, 2007. "Neighborhood effects and trial on the internet: Evidence from online grocery retailing," Quantitative Marketing and Economics (QME), Springer, vol. 5(4), pages 361-400, December.
  4. Yaniv Dover & Jacob Goldenberg & Daniel Shapira, 2012. "Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data," Marketing Science, INFORMS, vol. 31(4), pages 689-712, July.
  5. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
  6. Hernández-Mireles, C., 2010. "Finding the Influentials that Drive the Diffusion of New Technologies," ERIM Report Series Research in Management ERS-2010-023-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  7. Andrea Schöndeling & Alexa B. Burmester & Alexander Edeling & André Marchand & Michel Clement, 2023. "Marvelous advertising returns? A meta-analysis of advertising elasticities in the entertainment industry," Journal of the Academy of Marketing Science, Springer, vol. 51(5), pages 1019-1045, September.
  8. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
  9. Seungkyu Shin & Juyong Park, 2018. "On-Chart Success Dynamics Of Popular Songs," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(03n04), pages 1-18, May.
  10. Michael Haenlein, 2011. "A social network analysis of customer-level revenue distribution," Marketing Letters, Springer, vol. 22(1), pages 15-29, March.
  11. David Godes & Dina Mayzlin, 2009. "Firm-Created Word-of-Mouth Communication: Evidence from a Field Test," Marketing Science, INFORMS, vol. 28(4), pages 721-739, 07-08.
  12. Wolfgang Jank & P. K. Kannan, 2005. "Understanding Geographical Markets of Online Firms Using Spatial Models of Customer Choice," Marketing Science, INFORMS, vol. 24(4), pages 623-634, December.
  13. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
  14. Piotr Przybyła & Katarzyna Sznajd-Weron & Rafał Weron, 2014. "Diffusion Of Innovation Within An Agent-Based Model: Spinsons, Independence And Advertising," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-22.
  15. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
  16. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
  17. Gadi Fibich & Ro'i Gibori, 2010. "Aggregate Diffusion Dynamics in Agent-Based Models with a Spatial Structure," Operations Research, INFORMS, vol. 58(5), pages 1450-1468, October.
  18. Guoyin Jiang & Feicheng Ma & Youtian Wang, 2012. "A review on the evolution of user acceptance behaviour in collaborative e-commerce," International Journal of Electronic Finance, Inderscience Enterprises Ltd, vol. 6(1), pages 62-78.
  19. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
  20. Andrea Ellero & Annamaria Sorato & Giovanni Fasano, 2011. "A new model for estimating the probability of information spreading with opinion leaders," Working Papers 13, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
  21. van Everdingen, Y.M. & Fok, D. & Stremersch, S., 2008. "Modeling Global Spill-Over of New Product Takeoff," ERIM Report Series Research in Management ERS-2008-067-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  22. Jacob Goldenberg & Oded Lowengart & Daniel Shapira, 2009. "Zooming In: Self-Emergence of Movements in New Product Growth," Marketing Science, INFORMS, vol. 28(2), pages 274-292, 03-04.
  23. John Andy Wood, 2021. "Incorporating negative and positive word of mouth (WOM) in compartment-based epidemiology models in a not-for-profit marketing context," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(3), pages 199-209, September.
  24. Kopalle, Praveen K. & Lehmann, Donald R., 2015. "The Truth Hurts: How Customers May Lose From Honest Advertising," International Journal of Research in Marketing, Elsevier, vol. 32(3), pages 251-262.
  25. Sam Hui & Eric Bradlow, 2012. "Bayesian multi-resolution spatial analysis with applications to marketing," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 419-452, December.
  26. Deichmann, Dirk & Moser, Christine & Birkholz, Julie M. & Nerghes, Adina & Groenewegen, Peter & Wang, Shenghui, 2020. "Ideas with impact: How connectivity shapes idea diffusion," Research Policy, Elsevier, vol. 49(1).
  27. Yanhao (Max) Wei & Anthony Dukes, 2021. "Cryptocurrency Adoption with Speculative Price Bubbles," Marketing Science, INFORMS, vol. 40(2), pages 241-260, March.
  28. Stefan Stremersch & Eitan Muller & Renana Peres, 2010. "Does new product growth accelerate across technology generations?," Marketing Letters, Springer, vol. 21(2), pages 103-120, June.
  29. Christophe Van den Bulte & Yogesh V. Joshi, 2007. "New Product Diffusion with Influentials and Imitators," Marketing Science, INFORMS, vol. 26(3), pages 400-421, 05-06.
  30. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
  31. Renato Guseo & Mariangela Guidolin, 2008. "Cellular automata and Riccati equation models for diffusion of innovations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 291-308, July.
  32. Múgica, Jose M. & Vidal-Sanz, Jose M., 2006. "Do business density and variety determine retail performance?," DEE - Working Papers. Business Economics. WB wb065817, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
  33. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  34. Vahideh Sadat Abedi & Oded Berman & Dmitry Krass, 2014. "Supporting New Product or Service Introductions: Location, Marketing, and Word of Mouth," Operations Research, INFORMS, vol. 62(5), pages 994-1013, October.
  35. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
  36. Andrea Ellero & Giovanni Fasano & Annamaria Sorato, 2008. "A Modified Galam's Model," Working Papers 180, Department of Applied Mathematics, Università Ca' Foscari Venezia.
  37. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
  38. Ellero, Andrea & Fasano, Giovanni & Sorato, Annamaria, 2009. "A modified Galam’s model for word-of-mouth information exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3901-3910.
  39. Xiao, Yu & Liu, Liangliang, 2024. "How does information competition affect new product diffusion? Insights from computational experiments," Journal of Business Research, Elsevier, vol. 183(C).
  40. William Rand & Roland T. Rust & Min Kim, 2018. "Complex systems: marketing’s new frontier," AMS Review, Springer;Academy of Marketing Science, vol. 8(3), pages 111-127, December.
  41. Bart J. Bronnenberg & Carl F. Mela, 2004. "Market Roll-Out and Retailer Adoption for New Brands," Marketing Science, INFORMS, vol. 23(4), pages 500-518, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.