IDEAS home Printed from https://ideas.repec.org/r/ier/iecrev/v40y1999i2p487-508.html
   My bibliography  Save this item

Bootstrap Testing in Nonlinear Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nested Pseudo-likelihood Estimation And Bootstrap-based Inference For Structural Discrete Markov Decision Models," Working Paper 1063, Economics Department, Queen's University.
  2. Dufour, Jean-Marie & Khalaf, Lynda, 2002. "Simulation based finite and large sample tests in multivariate regressions," Journal of Econometrics, Elsevier, vol. 111(2), pages 303-322, December.
  3. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
  4. Timothy G. Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2023. "Bootstrap inference under cross‐sectional dependence," Quantitative Economics, Econometric Society, vol. 14(2), pages 511-569, May.
  5. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
  6. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
  7. Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," Papers 2402.05030, arXiv.org, revised Nov 2024.
  8. Sun, Yixiao & Kim, Min Seong, 2009. "k-step Bootstrap Bias Correction for Fixed Effects Estimators in Nonlinear Panel Models," University of California at San Diego, Economics Working Paper Series qt9gn6n5mr, Department of Economics, UC San Diego.
  9. Davidson, R. & MacKinnon & J.G., 1999. "Artificial Regressions," G.R.E.Q.A.M. 99a04, Universite Aix-Marseille III.
  10. Hong, H. & Scaillet, O., 2006. "A fast subsampling method for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 133(2), pages 557-578, August.
  11. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
  12. Timothy Patrick Moran, 2006. "Statistical Inference for Measures of Inequality With a Cross-National Bootstrap Application," Sociological Methods & Research, , vol. 34(3), pages 296-333, February.
  13. Davidson, Russell & MacKinnon, James G., 2007. "Improving the reliability of bootstrap tests with the fast double bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3259-3281, April.
  14. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
  15. Bolduc, Denis & Khalaf, Lynda & Yélou, Clément, 2010. "Identification robust confidence set methods for inference on parameter ratios with application to discrete choice models," Journal of Econometrics, Elsevier, vol. 157(2), pages 317-327, August.
  16. Marine Carrasco & Guy Tchuente, 2016. "Regularization Based Anderson Rubin Tests for Many Instruments," Studies in Economics 1608, School of Economics, University of Kent.
  17. Martin Browning & Jens Bonke, 2006. "Allocation within the household: direct survey evidence," Economics Series Working Papers 286, University of Oxford, Department of Economics.
  18. Holt, Matthew T., 2002. "Inverse demand systems and choice of functional form," European Economic Review, Elsevier, vol. 46(1), pages 117-142, January.
  19. Tsai, I-Chun, 2019. "Dynamic price–volume causality in the American housing market: A signal of market conditions," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 385-400.
  20. Abdulrahman, Abdulallah S & Johnston, Robert J, 2016. "Systematic Non-Response in Stated Preference Choice Experiments: Implications for the Valuation of Climate Risk Reductions," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235465, Agricultural and Applied Economics Association.
  21. Yuriy Gorodnichenko, 2005. "Reduced-Rank Identification of Structural Shocks in VARs," Macroeconomics 0512011, University Library of Munich, Germany.
  22. J. G. Hirschberg, J. N. Lye & D. J. Slottje, 2008. "Confidence Intervals for Estimates of Elasticities," Department of Economics - Working Papers Series 1053, The University of Melbourne.
  23. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
  24. Zhang Saijuan & Krebs-Smith Susan M. & Midthune Douglas & Perez Adriana & Buckman Dennis W. & Kipnis Victor & Freedman Laurence S. & Dodd Kevin W. & Carroll Raymond J, 2011. "Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, January.
  25. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
  26. Klein, Torsten L., 2014. "Communicating quantitative information: tables vs graphs," MPRA Paper 60514, University Library of Munich, Germany.
  27. Bolduc, Denis & Khalaf, Lynda & Moyneur, Érick, 2008. "Identification-robust simulation-based inference in joint discrete/continuous models for energy markets," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3148-3161, February.
  28. Mehrotra, Aaron & Peltonen, Tuomas & Santos Rivera, Alvaro, 2010. "Modelling inflation in China--A regional perspective," China Economic Review, Elsevier, vol. 21(2), pages 237-255, June.
  29. Hafner, Christian M. & Preminger, Arie, 2015. "An ARCH model without intercept," Economics Letters, Elsevier, vol. 129(C), pages 13-17.
  30. Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," THEMA Working Papers 2024-01, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  31. Bravo, Francesco & Crudu, Federico, 2012. "Efficient bootstrap with weakly dependent processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3444-3458.
  32. Alcázar, Lorena & Nakasone, Eduardo & Torero, Máximo, 2007. "Provision of Public Services and Welfare of the Poor: Learning from an Incomplete Electricity Privatization Process in Rural Peru," IDB Publications (Working Papers) 3351, Inter-American Development Bank.
  33. Jean-Jacques Forneron, 2022. "Estimation and Inference by Stochastic Optimization," Papers 2205.03254, arXiv.org.
  34. Forneron, Jean-Jacques, 2024. "Estimation and inference by stochastic optimization," Journal of Econometrics, Elsevier, vol. 238(2).
  35. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
  36. Huber, Martin & Camponovo, Lorenzo & Bodory, Hugo & Lechner, Michael, 2016. "A wild bootstrap algorithm for propensity score matching estimators," FSES Working Papers 470, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
  37. Paulo Parente & Richard J. Smith, 2024. "Implied probability kernel block bootstrap for time series moment condition models," CeMMAP working papers 08/24, Institute for Fiscal Studies.
  38. James G. MacKinnon & Russell Davidson, 2000. "Improving The Reliability Of Bootstrap Tests," Working Paper 995, Economics Department, Queen's University.
  39. Dilem Yildirim & Ralf Becker & Denise R Osborn, 2009. "Bootstrap Unit Root Tests for Nonlinear Threshold Models," Economics Discussion Paper Series 0915, Economics, The University of Manchester.
  40. Leslie G. Godfrey, 2005. "Controlling the Overall Significance Level of a Battery of Least Squares Diagnostic Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(2), pages 263-279, April.
  41. Jean-Jacques Forneron & Serena Ng, 2020. "Inference by Stochastic Optimization: A Free-Lunch Bootstrap," Papers 2004.09627, arXiv.org, revised Sep 2020.
  42. Armstrong, Timothy B. & Bertanha, Marinho & Hong, Han, 2014. "A fast resample method for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 179(2), pages 128-133.
  43. Hirschberg, J.G. & Lye, J.N. & Slottje, D.J., 2008. "Inferential methods for elasticity estimates," Journal of Econometrics, Elsevier, vol. 147(2), pages 299-315, December.
  44. Denis Bolduc & Lynda Khalaf & Clément Yélou, 2005. "Identification Robust Confidence Sets Methods for Inference on Parameter Ratios and their Application to Estimating Value-of-Time," Computing in Economics and Finance 2005 48, Society for Computational Economics.
  45. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  46. Manuel Landajo & María José Presno, 2010. "Stationarity testing under nonlinear models. Some asymptotic results," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 392-405, September.
  47. Máximo Torero & Lorena Alcazar & Eduardo Nakasone, 2007. "El suministro de servicios públicos y bienestar social para los pobres. Aprendizaje de la privatización incompleta del sector eléctrico en Perú," Research Department Publications 3233, Inter-American Development Bank, Research Department.
  48. Lo Prete, Chiara & Norman, Catherine S., 2013. "Rockets and feathers in power futures markets? Evidence from the second phase of the EU ETS," Energy Economics, Elsevier, vol. 36(C), pages 312-321.
  49. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2008. "Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models," Journal of Econometrics, Elsevier, vol. 146(1), pages 92-106, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.