IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v7y2011i1n1.html
   My bibliography  Save this article

Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components

Author

Listed:
  • Zhang Saijuan
  • Krebs-Smith Susan M.
  • Midthune Douglas
  • Perez Adriana
  • Buckman Dennis W.
  • Kipnis Victor
  • Freedman Laurence S.
  • Dodd Kevin W.
  • Carroll Raymond J

Abstract

There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole grains. We demonstrate numerically that our methods lead to increased speed of computation, converge to reasonable solutions, and have the flexibility to be used in either a frequentist or a Bayesian manner.

Suggested Citation

  • Zhang Saijuan & Krebs-Smith Susan M. & Midthune Douglas & Perez Adriana & Buckman Dennis W. & Kipnis Victor & Freedman Laurence S. & Dodd Kevin W. & Carroll Raymond J, 2011. "Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, January.
  • Handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:1
    DOI: 10.2202/1557-4679.1267
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1267
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Johnson, Brent A. & Herring, Amy H. & Ibrahim, Joseph G. & Siega-Riz, Anna Maria, 2007. "Structured Measurement Error in Nutritional Epidemiology: Applications in the Pregnancy, Infection, and Nutrition (PIN) Study," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 856-866, September.
    3. Samiran Sinha & Bani K. Mallick & Victor Kipnis & Raymond J. Carroll, 2010. "Semiparametric Bayesian Analysis of Nutritional Epidemiology Data in the Presence of Measurement Error," Biometrics, The International Biometric Society, vol. 66(2), pages 444-454, June.
    4. Leung, Siu Fai & Yu, Shihti, 1996. "On the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 197-229.
    5. Liang Li & Jun Shao & Mari Palta, 2005. "A Longitudinal Measurement Error Model with a Semicontinuous Covariate," Biometrics, The International Biometric Society, vol. 61(3), pages 824-830, September.
    6. Ekaterini Kyriazidou, 1997. "Estimation of a Panel Data Sample Selection Model," Econometrica, Econometric Society, vol. 65(6), pages 1335-1364, November.
    7. Victor Kipnis & Douglas Midthune & Dennis W. Buckman & Kevin W. Dodd & Patricia M. Guenther & Susan M. Krebs-Smith & Amy F. Subar & Janet A. Tooze & Raymond J. Carroll & Laurence S. Freedman, 2009. "Modeling Data with Excess Zeros and Measurement Error: Application to Evaluating Relationships between Episodically Consumed Foods and Health Outcomes," Biometrics, The International Biometric Society, vol. 65(4), pages 1003-1010, December.
    8. Davidson, Russell & MacKinnon, James G, 1999. "Bootstrap Testing in Nonlinear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 487-508, May.
    9. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    10. Wand, M. P., 1998. "Finite sample performance of deconvolving density estimators," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 131-139, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:jss:jstsof:46:c03 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Chiang & Djeto Assane, 2007. "Determinants of music copyright violations on the university campus," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 31(3), pages 187-204, September.
    2. Cairns, Alexander P. & Meilke, Karl D., 2012. "Canadian Agrifood Export Performance and the Growth Potential of the BRICs and Next-11," Trade Policy Briefs 145973, Canadian Agricultural Trade Policy Research Network.
    3. Takashi Yamagata & Chris Orme, 2005. "On Testing Sample Selection Bias Under the Multicollinearity Problem," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 467-481.
    4. Marion Kohler & Anthony Rossiter, 2005. "Property Owners in Australia: A Snapshot," RBA Research Discussion Papers rdp2005-03, Reserve Bank of Australia.
    5. Liu, Lei & Strawderman, Robert L. & Cowen, Mark E. & Shih, Ya-Chen T., 2010. "A flexible two-part random effects model for correlated medical costs," Journal of Health Economics, Elsevier, vol. 29(1), pages 110-123, January.
    6. Reneé van Eyden, 2012. "Consumer demand for alcoholic beverages and tobacco in Lesotho: A double-hurdle approach," Working Papers 315, Economic Research Southern Africa.
    7. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    8. Murtazashvili, Irina & Wooldridge, Jeffrey M., 2016. "A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching," Journal of Econometrics, Elsevier, vol. 190(2), pages 252-266.
    9. Gayle, George-Levi & Viauroux, Christelle, 2007. "Root-N consistent semiparametric estimators of a dynamic panel-sample-selection model," Journal of Econometrics, Elsevier, vol. 141(1), pages 179-212, November.
    10. Francis Teal & Måns Söderbom, 2002. "Does firm size really affect earnings?," Economics Series Working Papers WPS/2002-08, University of Oxford, Department of Economics.
    11. Insan Tunali & Berk Yavuzoglu, 2018. "Edgeworth Expansion Based Correction Of Selectivity Bias In Models Of Double Selection," Working Papers 1802, Nazarbayev University, Department of Economics, revised Nov 2018.
    12. Saulo, Helton & Vila, Roberto & Cordeiro, Shayane S. & Leiva, Víctor, 2023. "Bivariate symmetric Heckman models and their characterization," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    13. Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
    14. Christensen, Björn, 2003. "Selektionsverzerrungen, erfragte Reservationslöhne und Arbeitslosigkeitsdauer," Kiel Working Papers 1162, Kiel Institute for the World Economy (IfW Kiel).
    15. Marjan Petreski & Nikica Blazevski & Blagica Petreski, 2014. "Gender Wage Gap when Women are Highly Inactive: Evidence from Repeated Imputations with Macedonian Data," Journal of Labor Research, Springer, vol. 35(4), pages 393-411, December.
    16. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    17. Ikerne Valle Erkiaga & Kepa Ikazuriaga, 2013. "Assessing Changes in Capital and Investment as a Result of Fishing Capacity Limitation Programs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 223-260, February.
    18. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    19. Sirchenko Andrei, 2012. "A model for ordinal responses with an application to policy interest rate," EERC Working Paper Series 12/13e, EERC Research Network, Russia and CIS.
    20. Kyung‐Rae Hyun & Sungwook Kang & Sunmi Lee, 2016. "Population Aging and Healthcare Expenditure in Korea," Health Economics, John Wiley & Sons, Ltd., vol. 25(10), pages 1239-1251, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.