IDEAS home Printed from https://ideas.repec.org/r/hal/wpaper/hal-00866425.html
   My bibliography  Save this item

Exploring the potential for energy conservation in French households through hybrid modelling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Oskar Lecuyer & Ruben Bibas, 2011. "Combining climate and energy policies: synergies or antagonisms?," Post-Print hal-00801917, HAL.
  2. Alessio Mastrucci & Bas Ruijven & Edward Byers & Miguel Poblete-Cazenave & Shonali Pachauri, 2021. "Global scenarios of residential heating and cooling energy demand and CO2 emissions," Climatic Change, Springer, vol. 168(3), pages 1-26, October.
  3. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
  4. Glotin, David & Bourgeois, Cyril & Giraudet, Louis-Gaëtan & Quirion, Philippe, 2019. "Prediction is difficult, even when it's about the past: A hindcast experiment using Res-IRF, an integrated energy-economy model," Energy Economics, Elsevier, vol. 84(S1).
  5. Frédéric Branger & Louis-Gaëtan Giraudet & Céline Guivarch & Philippe Quirion, 2014. "Sensitivity analysis of an energy-economy model of the residential building sector," Working Papers hal-01016399, HAL.
  6. Oskar Lecuyer & Ruben Bibas, 2011. "Combining Climate and Energy Policies: Synergies or Antagonism? Modeling Interactions With Energy Efficiency Instruments," Working Papers 2011.98, Fondazione Eni Enrico Mattei.
  7. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
  8. Nabernegg, Stefan & Bednar-Friedl, Birgit & Muñoz, Pablo & Titz, Michaela & Vogel, Johanna, 2019. "National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains," Ecological Economics, Elsevier, vol. 158(C), pages 146-157.
  9. Charlier, Dorothée & Risch, Anna & Salmon, Claire, 2018. "Energy Burden Alleviation and Greenhouse Gas Emissions Reduction: Can We Reach Two Objectives With One Policy?," Ecological Economics, Elsevier, vol. 143(C), pages 294-313.
  10. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
  11. Cyril Bourgeois & Louis-Gaëtan Giraudet & Philippe Quirion, 2019. "Social-environmental-economic trade-offs associated with carbon-tax revenue recycling [Arbitrages économiques, sociaux et environnementaux pour le recyclage des revenus de la taxe carbone]," Working Papers hal-02073964, HAL.
  12. Bourgeois, Cyril & Giraudet, Louis-Gaëtan & Quirion, Philippe, 2021. "Lump-sum vs. energy-efficiency subsidy recycling of carbon tax revenue in the residential sector: A French assessment," Ecological Economics, Elsevier, vol. 184(C).
  13. Giraudet, Louis-Gaëtan & Bourgeois, Cyril & Quirion, Philippe, 2021. "Policies for low-carbon and affordable home heating: A French outlook," Energy Policy, Elsevier, vol. 151(C).
  14. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
  15. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  16. Mathy, Sandrine & Fink, Meike & Bibas, Ruben, 2015. "Rethinking the role of scenarios: Participatory scripting of low-carbon scenarios for France," Energy Policy, Elsevier, vol. 77(C), pages 176-190.
  17. Fabio Grazi & Henri Waisman, 2015. "Agglomeration, Urban Growth and Infrastructure in Global Climate Policy: A Dynamic CGE Approach," Working Papers 2015.61, Fondazione Eni Enrico Mattei.
  18. Brita Bye & Taran Fæhn & Orvika Rosnes, 2015. "Residental energy efficiency and European carbon policies A CGE-analysis with bottom-up information on energy efficiency technologies," Discussion Papers 817, Statistics Norway, Research Department.
  19. Olegs Krasnopjorovs & Daniels Jukna & Konstantins Kovalovs, 2022. "On the Use of General Equilibrium Model to Assess the Impact of Climate Policy in Latvia," Post-Print hal-03861139, HAL.
  20. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
  21. Emmanuel Fragnière & Roman Kanala & Francesco Moresino & Adriana Reveiu & Ion Smeureanu, 2017. "Coupling techno-economic energy models with behavioral approaches," Operational Research, Springer, vol. 17(2), pages 633-647, July.
  22. Bakhtyar, B. & Ibrahim, Y. & Alghoul, M.A. & Aziz, N. & Fudholi, A. & Sopian, K., 2014. "Estimating the CO2 abatement cost: Substitute Price of Avoiding CO2 Emission (SPAE) by Renewable Energy׳s Feed in Tariff in selected countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 205-210.
  23. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
  24. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
  25. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
  26. Frédéric Branger & Louis-Gaëtan Giraudet & Céline Guivarch & Philippe Quirion, 2015. "Global sensitivity analysis of an energy-economy model of the residential building sector," Policy Papers 2015.01, FAERE - French Association of Environmental and Resource Economists.
  27. zvingilaite, Erika & Klinge Jacobsen, Henrik, 2012. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local externalities," MPRA Paper 41545, University Library of Munich, Germany.
  28. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
  29. Dorothée Charlier & Anna Risch & Claire Salmon, 2016. "Reducing the Energy Burden of the Poor and Greenhouse Gas Emissions: Can We Kill Two Birds with One Stone?," Policy Papers 2016.01, FAERE - French Association of Environmental and Resource Economists.
  30. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
  31. Eoin Ó Broin & Érika Mata & Jonas Nässén & Filip Johnsson, 2015. "Quantification of the Energy Efficiency Gap in the Swedish Residential Sector," Post-Print hal-01219283, HAL.
  32. Charlotte Senkpiel & Audrey Dobbins & Christina Kockel & Jan Steinbach & Ulrich Fahl & Farina Wille & Joachim Globisch & Sandra Wassermann & Bert Droste-Franke & Wolfgang Hauser & Claudia Hofer & Lars, 2020. "Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches," Energies, MDPI, vol. 13(18), pages 1-30, September.
  33. Stéphane Poncin, 2018. "Energy policy tools in Luxembourg - Assessing their impact on households’ space heating energy consumption and CO2 emissions by means of the LuxHEI model," DEM Discussion Paper Series 18-23, Department of Economics at the University of Luxembourg.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.