My bibliography
Save this item
Financial distress prediction: The case of French small and medium-sized firms
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oz, Ibrahim Onur & Yelkenci, Tezer & Meral, Gorkem, 2021. "The role of earnings components and machine learning on the revelation of deteriorating firm performance," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Christophe Schalck & Meryem Yankol-Schalck, 2021.
"Predicting French SME failures: new evidence from machine learning techniques,"
Applied Economics, Taylor & Francis Journals, vol. 53(51), pages 5948-5963, November.
- Christophe Schalck & Meryem Schalck, 2021. "Predicting French SME Failures: New Evidence from Machine Learning Techniques," Working Papers 2021-009, Department of Research, Ipag Business School.
- Maria-Lenuţa Ciupac-Ulici & Daniela-Georgeta Beju & Ioan-Alin Nistor & Flaviu Pișcoran, 2023. "The impact of the Altman score on the energy sector companies," Journal of Financial Studies, Institute of Financial Studies, vol. 14(8), pages 45-56, June.
- Carmona, Pedro & Dwekat, Aladdin & Mardawi, Zeena, 2022. "No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure," Research in International Business and Finance, Elsevier, vol. 61(C).
- Mselmi, Nada & Hamza, Taher & Lahiani, Amine & Shahbaz, Muhammad, 2019. "Pricing corporate financial distress: Empirical evidence from the French stock market," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 13-27.
- Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
- Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
- Seiler, Volker & Fanenbruck, Katharina Maria, 2021. "Acceptance of digital investment solutions: The case of robo advisory in Germany," Research in International Business and Finance, Elsevier, vol. 58(C).
- Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
- Pham, Tho & Talavera, Oleksandr & Wood, Geoffrey & Yin, Shuxing, 2022.
"Quality of working environment and corporate financial distress,"
Finance Research Letters, Elsevier, vol. 46(PB).
- Tho Pham & Oleksandr Talavera & Geoffrey Wood & Shuxing Yin, 2021. "Quality of working environment and corporate financial distress," Discussion Papers 21-04, Department of Economics, University of Birmingham.
- Egor O. Bukharin & Sofia I. Mangileva & Vladislav V. Afanasev, 2024. "Default Prediction for Russian Food Service Firms: Contribution of Non-Financial Factors and Machine Learning," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(1), pages 206-226.
- Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
- Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Alexandra Horobet & Stefania Cristina Curea & Alexandra Smedoiu Popoviciu & Cosmin-Alin Botoroga & Lucian Belascu & Dan Gabriel Dumitrescu, 2021. "Solvency Risk and Corporate Performance: A Case Study on European Retailers," JRFM, MDPI, vol. 14(11), pages 1-34, November.
- ElBannan, Mona A., 2021. "On the prediction of financial distress in emerging markets: What matters more? Empirical evidence from Arab spring countries," Emerging Markets Review, Elsevier, vol. 47(C).
- Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
- Vladan Pavlovic & Goranka Knezevic & Antonio Andre Cunha Callado, 2022. "Is the Corporate Solvency Conundrum Primarily a Balkan Issue or a Broader European Continental Misunderstanding?," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 72-93.
- Fernández-Gámez, Manuel Ángel & Soria, Juan Antonio Campos & Santos, José António C. & Alaminos, David, 2020. "European country heterogeneity in financial distress prediction: An empirical analysis with macroeconomic and regulatory factors," Economic Modelling, Elsevier, vol. 88(C), pages 398-407.
- Ding, Shusheng & Cui, Tianxiang & Bellotti, Anthony Graham & Abedin, Mohammad Zoynul & Lucey, Brian, 2023. "The role of feature importance in predicting corporate financial distress in pre and post COVID periods: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Chih‐Chun Chen & Chun‐Da Chen & Donald Lien, 2020. "Financial distress prediction model: The effects of corporate governance indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1238-1252, December.
- Oliver Lukason & María-del-Mar Camacho-Miñano, 2019. "Bankruptcy Risk, Its Financial Determinants and Reporting Delays: Do Managers Have Anything to Hide?," Risks, MDPI, vol. 7(3), pages 1-15, July.
- Bravo-Urquiza, Francisco & Moreno-Ureba, Elena, 2021. "Does compliance with corporate governance codes help to mitigate financial distress?," Research in International Business and Finance, Elsevier, vol. 55(C).
- Daniel Ogachi & Richard Ndege & Peter Gaturu & Zeman Zoltan, 2020. "Corporate Bankruptcy Prediction Model, a Special Focus on Listed Companies in Kenya," JRFM, MDPI, vol. 13(3), pages 1-14, March.
- Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
- Yinghua Song & Minzhe Jiang & Shixuan Li & Shengzhe Zhao, 2024. "Class‐imbalanced financial distress prediction with machine learning: Incorporating financial, management, textual, and social responsibility features into index system," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 593-614, April.
- repec:fst:rfsisf:v:8:y:2023:i:special-june_2023:p:45-56 is not listed on IDEAS
- Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
- Yang Liu & Qingguo Zeng & Bobo Li & Lili Ma & Joaquín Ordieres‐Meré, 2022. "Anticipating financial distress of high‐tech startups in the European Union: A machine learning approach for imbalanced samples," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1131-1155, September.