My bibliography
Save this item
Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bag, Surajit & Dhamija, Pavitra & Singh, Rajesh Kumar & Rahman, Muhammad Sabbir & Sreedharan, V. Raja, 2023. "Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study," Journal of Business Research, Elsevier, vol. 154(C).
- Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
- Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
- Francesco Lo Franco & Mattia Ricco & Vincenzo Cirimele & Valerio Apicella & Benedetto Carambia & Gabriele Grandi, 2023. "Electric Vehicle Charging Hub Power Forecasting: A Statistical and Machine Learning Based Approach," Energies, MDPI, vol. 16(4), pages 1-27, February.
- Athanasios Paraskevas & Dimitrios Aletras & Antonios Chrysopoulos & Antonios Marinopoulos & Dimitrios I. Doukas, 2022. "Optimal Management for EV Charging Stations: A Win–Win Strategy for Different Stakeholders Using Constrained Deep Q-Learning," Energies, MDPI, vol. 15(7), pages 1-24, March.
- Roy, Avipsa & Law, Mankin, 2022. "Examining spatial disparities in electric vehicle charging station placements using machine learning," SocArXiv hvw2t, Center for Open Science.
- Dietmar Göhlich & Kai Nagel & Anne Magdalene Syré & Alexander Grahle & Kai Martins-Turner & Ricardo Ewert & Ricardo Miranda Jahn & Dominic Jefferies, 2021. "Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
- Adrian Ostermann & Yann Fabel & Kim Ouan & Hyein Koo, 2022. "Forecasting Charging Point Occupancy Using Supervised Learning Algorithms," Energies, MDPI, vol. 15(9), pages 1-23, May.
- Philipp A. Friese & Wibke Michalk & Markus Fischer & Cornelius Hardt & Klaus Bogenberger, 2021. "Charging Point Usage in Germany—Automated Retrieval, Analysis, and Usage Types Explained," Sustainability, MDPI, vol. 13(23), pages 1-26, November.
- Subhaditya Shom & Kevin James & Mahmoud Alahmad, 2022. "Understanding the Correlation of Demographic Features with BEV Uptake at the Local Level in the United States," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
- Winschermann, Leoni & Bañol Arias, Nataly & Hoogsteen, Gerwin & Hurink, Johann, 2023. "Assessing the value of information for electric vehicle charging strategies at office buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
- Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhao, Yiwen & Zhan, Weipeng, 2023. "Stacking regression technology with event profile for electric vehicle fast charging behavior prediction," Applied Energy, Elsevier, vol. 336(C).
- Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
- Sanchari Deb & Xiao-Zhi Gao, 2022. "Prediction of Charging Demand of Electric City Buses of Helsinki, Finland by Random Forest," Energies, MDPI, vol. 15(10), pages 1-18, May.
- Young-Eun Jeon & Suk-Bok Kang & Jung-In Seo, 2022. "Hybrid Predictive Modeling for Charging Demand Prediction of Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
- Roy, Avipsa & Law, Mankin, 2022. "Examining spatial disparities in electric vehicle charging station placements using machine learning," SocArXiv hvw2t_v1, Center for Open Science.
- Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J., 2024. "From user to operator: Rationalizing the charging infrastructure deployment. A case study of Berlin," Applied Energy, Elsevier, vol. 376(PB).
- Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
- Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
- Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
- Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
- Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
- Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.