IDEAS home Printed from https://ideas.repec.org/r/ems/eureir/20978.html
   My bibliography  Save this item

Asymmetry and Long Memory in Volatility Modelling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
  2. Asai, M. & McAleer, M.J., 2016. "A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics," Econometric Institute Research Papers EI2016-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  3. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
  4. Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," JRFM, MDPI, vol. 10(4), pages 1-16, December.
  5. Gagnon, Marie-Hélène & Power, Gabriel J. & Toupin, Dominique, 2016. "International stock market cointegration under the risk-neutral measure," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 243-255.
  6. Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Documentos de Trabajo del ICAE 2016-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  7. repec:cte:wsrepe:ws131110 is not listed on IDEAS
  8. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
  9. Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1141-1152, November.
  10. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
  11. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
  12. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
  13. Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.
  14. Junru Zhang & Hadrian Geri Djajadikerta & Zhaoyong Zhang, 2018. "Does Sustainability Engagement Affect Stock Return Volatility? Evidence from the Chinese Financial Market," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
  15. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
  16. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
  17. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
  18. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
  19. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
  20. Carl Lönnbark, 2016. "Asymmetry with respect to the memory in stock market volatilities," Empirical Economics, Springer, vol. 50(4), pages 1409-1419, June.
  21. Maki, Daiki, 2024. "Forecasting downside and upside realized volatility: The role of asymmetric information," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
  22. Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2015. "Is volatility clustering of asset returns asymmetric?," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 62-76.
  23. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
  24. Jiqian Wang & Feng Ma & M.I.M. Wahab & Dengshi Huang, 2021. "Forecasting China's Crude Oil Futures Volatility: The Role of the Jump, Jumps Intensity, and Leverage Effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 921-941, August.
  25. Li, Wenlan & Cheng, Yuxiang & Fang, Qiang, 2020. "Forecast on silver futures linked with structural breaks and day-of-the-week effect," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
  26. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
  27. Rangika Peiris & Minh-Ngoc Tran & Chao Wang & Richard Gerlach, 2024. "Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model," Papers 2408.13588, arXiv.org.
  28. Li, Yan & Huynh, Luu Duc Toan & Xu, Yongan & Liang, Hao, 2023. "The forecast ability of a belief-based momentum indicator in full-day, daytime, and nighttime volatilities of Chinese oil futures," Energy Economics, Elsevier, vol. 127(PB).
  29. Maki, Daiki & Ota, Yasushi, 2021. "Impacts of asymmetry on forecasting realized volatility in Japanese stock markets," Economic Modelling, Elsevier, vol. 101(C).
  30. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
  31. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
  32. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
  33. Ziggel, Daniel & Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2014. "A new set of improved Value-at-Risk backtests," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 29-41.
  34. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
  35. Manh Cuong Dong & Cathy W. S. Chen & Manabu Asai, 2023. "Bayesian non‐linear quantile effects on modelling realized kernels," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 981-995, January.
  36. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
  37. Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
  38. Xu Gong & Boqiang Lin, 2022. "Predicting the volatility of crude oil futures: The roles of leverage effects and structural changes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 610-640, January.
  39. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
  40. Abootaleb Shirvani & Stefan Mittnik & W. Brent Lindquist & Svetlozar T. Rachev, 2021. "Bitcoin Volatility and Intrinsic Time Using Double Subordinated Levy Processes," Papers 2109.15051, arXiv.org, revised Aug 2023.
  41. Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
  42. Daiki Maki & Yasushi Ota, 2020. "The impacts of asymmetry on modeling and forecasting realized volatility in Japanese stock markets," Papers 2006.00158, arXiv.org.
  43. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
  44. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
  45. Maki, Daiki, 2024. "Asymmetric effect of trading volume on realized volatility," International Review of Economics & Finance, Elsevier, vol. 94(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.