IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v87y2016icp64-88.html
   My bibliography  Save this item

Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lígia Conceição & Gonçalo Homem de Almeida Correia & José Pedro Tavares, 2020. "The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
  2. Matthias N. Sweet & Kailey Laidlaw, 2020. "No longer in the driver’s seat: How do affective motivations impact consumer interest in automated vehicles?," Transportation, Springer, vol. 47(5), pages 2601-2634, October.
  3. Tscharaktschiew, Stefan & Reimann, Felix, 2023. "The economics of speed choice and control in the presence of driverless vehicle cruising and parking-as-a-substitute-for-cruising," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
  4. Sisi Jian & David Rey & Vinayak Dixit, 2019. "An Integrated Supply-Demand Approach to Solving Optimal Relocations in Station-Based Carsharing Systems," Networks and Spatial Economics, Springer, vol. 19(2), pages 611-632, June.
  5. Ding, Zhong-Jun & Dai, Zong & Chen, Xiqun (Michael) & Jiang, Rui, 2020. "Simulating on-demand ride services in a Manhattan-like urban network considering traffic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  6. Konstantina Anastasiadou, 2021. "Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology," Sustainability, MDPI, vol. 13(9), pages 1-27, April.
  7. Wang, Shenhao & Zhao, Jinhua, 2019. "Risk preference and adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 215-229.
  8. Dai, Rongjian & Ding, Chuan & Gao, Jian & Wu, Xinkai & Yu, Bin, 2022. "Optimization and evaluation for autonomous taxi ride-sharing schedule and depot location from the perspective of energy consumption," Applied Energy, Elsevier, vol. 308(C).
  9. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
  10. Yinying He & Csaba Csiszár, 2021. "Model for Crowdsourced Parcel Delivery Embedded into Mobility as a Service Based on Autonomous Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, May.
  11. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
  12. Ge, Qian & Han, Ke & Liu, Xiaobo, 2021. "Matching and routing for shared autonomous vehicles in congestible network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  13. Zhao, Yan & Guo, Xiaolei & Liu, Henry X., 2021. "The impact of autonomous vehicles on commute ridesharing with uncertain work end time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 221-248.
  14. Pudāne, Baiba, 2019. "Departure Time Choice and Bottleneck Congestion with Automated Vehicles: Role of On-board Activities," MPRA Paper 96328, University Library of Munich, Germany.
  15. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.
  16. Milakis, Dimitris & Kroesen, Maarten & van Wee, Bert, 2018. "Implications of automated vehicles for accessibility and location choices: Evidence from an expert-based experiment," Journal of Transport Geography, Elsevier, vol. 68(C), pages 142-148.
  17. Jamil Hamadneh & Domokos Esztergár-Kiss, 2021. "The Influence of Introducing Autonomous Vehicles on Conventional Transport Modes and Travel Time," Energies, MDPI, vol. 14(14), pages 1-28, July.
  18. Faber, Koen & van Lierop, Dea, 2020. "How will older adults use automated vehicles? Assessing the role of AVs in overcoming perceived mobility barriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 353-363.
  19. Cui, Hongjun & Yang, Yizhe & Zhu, Minqing & Ma, Xinwei & Chen, Xiuyong & Qie, Binghui, 2023. "The scheduling methods with different demand priorities for shared autonomous vehicle system in hybrid demands mode considering dynamic travel time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
  20. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
  21. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
  22. Sehyun Tak & Soomin Woo & Sungjin Park & Sunghoon Kim, 2021. "The City-Wide Impacts of the Interactions between Shared Autonomous Vehicle-Based Mobility Services and the Public Transportation System," Sustainability, MDPI, vol. 13(12), pages 1-29, June.
  23. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
  24. Gelauff, George & Ossokina, Ioulia & Teulings, Coen, 2019. "Spatial and welfare effects of automated driving: Will cities grow, decline or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 277-294.
  25. Chen, Zhibin & He, Fang & Yin, Yafeng & Du, Yuchuan, 2017. "Optimal design of autonomous vehicle zones in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 44-61.
  26. Fan, Qiaochu & van Essen, J. Theresia & Correia, Gonçalo H.A., 2024. "A bi-level framework for heterogeneous fleet sizing of ride-hailing services considering an approximated mixed equilibrium between automated and non-automated traffic," European Journal of Operational Research, Elsevier, vol. 315(3), pages 879-898.
  27. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
  28. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
  29. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
  30. Cokyasar, Taner & Larson, Jeffrey, 2020. "Optimal assignment for the single-household shared autonomous vehicle problem," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 98-115.
  31. Sajjad Shafiei & Ziyuan Gu & Hanna Grzybowska & Chen Cai, 2023. "Impact of self-parking autonomous vehicles on urban traffic congestion," Transportation, Springer, vol. 50(1), pages 183-203, February.
  32. Scott Kaplan & Ben Gordon & Feras El Zarwi & Joan L. Walker & David Zilberman, 2019. "The Future of Autonomous Vehicles: Lessons from the Literature on Technology Adoption," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 583-597, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.