IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1226-d318081.html
   My bibliography  Save this article

The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic

Author

Listed:
  • Lígia Conceição

    (Research Center for Territory, Transports and Environment (CITTA), Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Gonçalo Homem de Almeida Correia

    (Department of Transport and Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands
    CITTA, Department of Civil Engineering, University of Coimbra, 3030-790 Coimbra, Portugal)

  • José Pedro Tavares

    (Research Center for Territory, Transports and Environment (CITTA), Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

Abstract

With automated vehicles (AVs), reversible lanes could be a sustainable transportation solution once there is vehicle-to-infrastructure connectivity informing AVs about the lane configuration changes. This paper introduced the reversible lane network design problem (RL-NDP), formulated in mixed-integer non-linear mathematical programming—both the traffic assignment and the reversible lane decisions were embedded. The model was applied on an hourly basis in the case study of the city of Delft, the Netherlands. Reversible lanes are examined under no traffic equilibrium (former paths are maintained); user-equilibrium (UE) assignment (AVs decide their own paths); and system-optimum (SO) traffic assignment (AVs are forced to follow SO paths). We found out that reversible lanes reduce congested roads, total travel times, and delays up to 36%, 9%, and 22%, respectively. The SO scenario was revealed to be beneficial in reducing the total travel time and congested roads in peak hours, whereas UE is equally optimal in the remaining hours. A dual-scenario mixing SO and UE throughout the day reduced congested roads, total travel times, and delay up to 40%, 8%, and 19%, respectively, yet increased 1% in travel distance. The spatial analysis suggested a substantial lane variability in the suburbs, yet a strong presence of reversible lanes in the city center.

Suggested Citation

  • Lígia Conceição & Gonçalo Homem de Almeida Correia & José Pedro Tavares, 2020. "The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1226-:d:318081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingyi Hua & Gang Ren & Yang Cheng & Chen Yu & Bin Ran, 2015. "Large-scale evacuation network optimization: a bi-level control method with uncertain arterial demand," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(7), pages 777-794, October.
    2. Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 64-88.
    3. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    4. Debbie Hopkins & Tim Schwanen, 2018. "Automated Mobility Transitions: Governing Processes in the UK," Sustainability, MDPI, vol. 10(4), pages 1-19, March.
    5. Ben-Ayed, Omar & Boyce, David E. & Blair, Charles E., 1988. "A general bilevel linear programming formulation of the network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 22(4), pages 311-318, August.
    6. Guangbing Xiao & Haibo Zhang & Ning Sun & Yong Chen & Jiamin Shi & Yong Zhang, 2019. "Cooperative Bargain for the Autonomous Separation of Traffic Flows in Smart Reversible Lanes," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    7. Scott B. Kelley & Bradley W. Lane & John M. DeCicco, 2019. "Pumping the Brakes on Robot Cars: Current Urban Traveler Willingness to Consider Driverless Vehicles," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Sun & Weiqi Hong & Hao Li & Chenjing Zhou, 2022. "Lane Optimization of Highway Reconstruction and Expansion Work Zone Considering Carbon Dioxide Emission Factors," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    2. Di, Zhen & Yang, Lixing, 2020. "Reversible lane network design for maximizing the coupling measure between demand structure and network structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Vilaça, Mariana & Santos, Gonçalo & Oliveira, Mónica S.A. & Coelho, Margarida C. & Correia, Gonçalo H.A., 2022. "Life cycle assessment of shared and private use of automated and electric vehicles on interurban mobility," Applied Energy, Elsevier, vol. 310(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulio Cantarella & Antonino Vitetta, 2006. "The multi-criteria road network design problem in an urban area," Transportation, Springer, vol. 33(6), pages 567-588, November.
    2. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    3. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    4. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    5. Gao, Ziyou & Wu, Jianjun & Sun, Huijun, 2005. "Solution algorithm for the bi-level discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 479-495, July.
    6. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    7. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    8. Petersen, E. R. & Taylor, A. J., 2001. "An investment planning model for a new North-Central railway in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 847-862, November.
    9. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    10. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    11. Cipriani, Ernesto & Fusco, Gaetano, 2004. "Combined signal setting design and traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 155(3), pages 569-583, June.
    12. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    13. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    14. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    15. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.
    16. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    17. Nader Naderializadeh & Kevin A. Crowe, 2020. "Formulating the integrated forest harvest-scheduling model to reduce the cost of the road-networks," Operational Research, Springer, vol. 20(4), pages 2283-2306, December.
    18. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    19. Melkote, Sanjay & Daskin, Mark S., 2001. "Capacitated facility location/network design problems," European Journal of Operational Research, Elsevier, vol. 129(3), pages 481-495, March.
    20. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1226-:d:318081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.