IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v30y1996i5p339-357.html
   My bibliography  Save this item

Asymmetric problems and stochastic process models of traffic assignment

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cantarella, Giulio E. & Watling, David P., 2016. "A general stochastic process for day-to-day dynamic traffic assignment: Formulation, asymptotic behaviour, and stability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 3-21.
  2. Han, Linghui & Wang, David Z.W. & Lo, Hong K. & Zhu, Chengjuan & Cai, Xingju, 2017. "Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 1-16.
  3. Hazelton, Martin L., 2002. "Day-to-day variation in Markovian traffic assignment models," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 637-648, August.
  4. Iryo, Takamasa & Watling, David, 2019. "Properties of equilibria in transport problems with complex interactions between users," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 87-114.
  5. Cen Zhang & Jan-Dirk Schmöcker & Martin Trépanier, 2022. "Latent stage model for carsharing usage frequency estimation with Montréal case study," Transportation, Springer, vol. 49(1), pages 185-211, February.
  6. Iryo, Takamasa & Smith, Michael J. & Watling, David, 2020. "Stabilisation strategy for unstable transport systems under general evolutionary dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 136-151.
  7. Mohamed Wahba & Amer Shalaby, 2014. "Learning-based framework for transit assignment modeling under information provision," Transportation, Springer, vol. 41(2), pages 397-417, March.
  8. Smith, Mike & Mounce, Richard, 2011. "A splitting rate model of traffic re-routeing and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1389-1409.
  9. A. Wang & I. Ziedins, 2018. "Probabilistic selfish routing in parallel batch and single-server queues," Queueing Systems: Theory and Applications, Springer, vol. 88(3), pages 389-407, April.
  10. Liu, Ronghui & Van Vliet, Dirck & Watling, David, 2006. "Microsimulation models incorporating both demand and supply dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 125-150, February.
  11. Minyu Shen & Feng Xiao & Weihua Gu & Hongbo Ye, 2024. "Cognitive Hierarchy in Day-to-day Network Flow Dynamics," Papers 2409.11908, arXiv.org.
  12. G. E. Cantarella & D. P. Watling, 2016. "Modelling road traffic assignment as a day-to-day dynamic, deterministic process: a unified approach to discrete- and continuous-time models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 69-98, March.
  13. Nagel Kai & Grether Dominik & Beuck Ulrike & Chen Yu & Rieser Marcel & Axhausen Kay W., 2008. "Multi-Agent Transport Simulations and Economic Evaluation," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 173-194, April.
  14. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
  15. Clark, Stephen D. & Watling, David P., 2002. "Sensitivity analysis of the probit-based stochastic user equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 617-635, August.
  16. Giulio Cantarella & Pietro Velonà & David Watling, 2015. "Day-to-day Dynamics & Equilibrium Stability in A Two-Mode Transport System with Responsive bus Operator Strategies," Networks and Spatial Economics, Springer, vol. 15(3), pages 485-506, September.
  17. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
  18. Nielsen, Otto Anker, 2000. "A stochastic transit assignment model considering differences in passengers utility functions," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 377-402, June.
  19. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part I – Model formulations under alternative distributions and restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 166-181.
  20. Pandey, Ayush & Lehe, Lewis J., 2024. "Congestive mode-switching and economies of scale on a bus route," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
  21. Iryo, Takamasa, 2016. "Day-to-day dynamical model incorporating an explicit description of individuals’ information collection behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 88-103.
  22. Liu, Renming & Jiang, Yu & Seshadri, Ravi & Ben-Akiva, Moshe & Azevedo, Carlos Lima, 2024. "Contextual Bayesian optimization of congestion pricing with day-to-day dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  23. Watling, David, 1998. "Perturbation stability of the asymmetric stochastic equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 155-171, April.
  24. Rambha, Tarun & Boyles, Stephen D., 2016. "Dynamic pricing in discrete time stochastic day-to-day route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 104-118.
  25. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
  26. Xiao, Yu & Lo, Hong K., 2016. "Day-to-day departure time modeling under social network influence," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 54-72.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.