IDEAS home Printed from https://ideas.repec.org/r/eee/respol/v36y2007i6p893-903.html
   My bibliography  Save this item

Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Vincent Mangematin & Khalid Errabi & Caroline Gauthier, 2011. "Large players in the nanogame: dedicated nanotech subsidiaries or distributed nanotech capabilities?," The Journal of Technology Transfer, Springer, vol. 36(6), pages 640-664, December.
  2. Kreuchauff, Florian & Teichert, Nina, 2014. "Nanotechnology as general purpose technology," Working Paper Series in Economics 53, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  3. Laura I. Schultz & Frederick L. Joutz, 2010. "Methods for identifying emerging General Purpose Technologies: a case study of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 155-170, October.
  4. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
  5. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
  6. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
  7. Edgar Schiebel & Marianne Hörlesberger & Ivana Roche & Claire François & Dominique Besagni, 2010. "An advanced diffusion model to identify emergent research issues: the case of optoelectronic devices," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 765-781, June.
  8. Sabatier, Mareva & Chollet, Barthélemy, 2017. "Is there a first mover advantage in science? Pioneering behavior and scientific production in nanotechnology," Research Policy, Elsevier, vol. 46(2), pages 522-533.
  9. Bozeman, Barry & Laredo, Philippe & Mangematin, Vincent, 2007. "Understanding the emergence and deployment of "nano" S&T," Research Policy, Elsevier, vol. 36(6), pages 807-812, July.
  10. Ramani, Shyama V. & Chowdhury, Nupur & Coronini, Roger & Reid, Susan, 2011. "On India's plunge into Nanotechnology: What are good ways to catch-up?," MERIT Working Papers 2011-020, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  11. Nicolas Battard & Paul F. Donnelly & Vincent Mangematin, 2012. "Integration of multiple stakeholders in scientific research : A sensemaking-sensegiving approach," Grenoble Ecole de Management (Post-Print) hal-01514751, HAL.
  12. Qingjun Zhao & Jiancheng Guan, 2012. "Modeling the dynamic relation between science and technology in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 561-579, February.
  13. Mariia Shkolnykova, 2021. "Who shapes plant biotechnology in Germany? Joint analysis of the evolution of co-authors’ and co-inventors’ networks," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 27-54, April.
  14. Vincent Mangematin & Khalid Errabi, 2012. "The Determinants of Science-Based Cluster Growth: The Case of Nanotechnology," Environment and Planning C, , vol. 30(1), pages 128-146, February.
  15. De Luca, Gabriele, 2021. "The development of machine intelligence in a computational universe," Technology in Society, Elsevier, vol. 65(C).
  16. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
  17. Andrea Schiffauerova & Catherine Beaudry, 2009. "Canadian nanotechnology innovation networks: intra-cluster, inter-cluster and foreign collaboration," Journal of Innovation Economics, De Boeck Université, vol. 0(2), pages 119-146.
  18. Ozcan, Sercan & Islam, Nazrul, 2014. "Collaborative networks and technology clusters — The case of nanowire," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 115-131.
  19. Philip Shapira & Seokbeom Kwon & Jan Youtie, 2017. "Tracking the emergence of synthetic biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1439-1469, September.
  20. Ying Huang & Jannik Schuehle & Alan L. Porter & Jan Youtie, 2015. "A systematic method to create search strategies for emerging technologies based on the Web of Science: illustrated for ‘Big Data’," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2005-2022, December.
  21. Muñoz-Écija, Teresa & Vargas-Quesada, Benjamín & Chinchilla Rodríguez, Zaida, 2019. "Coping with methods for delineating emerging fields: Nanoscience and nanotechnology as a case study," Journal of Informetrics, Elsevier, vol. 13(4).
  22. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
  23. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
  24. Patrick Herron & Aashish Mehta & Cong Cao & Timothy Lenoir, 2016. "Research diversification and impact: the case of national nanoscience development," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 629-659, November.
  25. Haiko Lietz, 2020. "Drawing impossible boundaries: field delineation of Social Network Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2841-2876, December.
  26. Nelson, Andrew & Earle, Andrew & Howard-Grenville, Jennifer & Haack, Julie & Young, Doug, 2014. "Do innovation measures actually measure innovation? Obliteration, symbolic adoption, and other finicky challenges in tracking innovation diffusion," Research Policy, Elsevier, vol. 43(6), pages 927-940.
  27. T. Gorjiara & C. Baldock, 2014. "Nanoscience and nanotechnology research publications: a comparison between Australia and the rest of the world," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 121-148, July.
  28. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
  29. Qingjun Zhao & Jiancheng Guan, 2013. "Love dynamics between science and technology: some evidences in nanoscience and nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 113-132, January.
  30. Dovev Lavie & Israel Drori, 2012. "Collaborating for Knowledge Creation and Application: The Case of Nanotechnology Research Programs," Organization Science, INFORMS, vol. 23(3), pages 704-724, June.
  31. Nicolas Battard & Paul F. Donnelly & Vincent Mangematin, 2012. "Integration of multiple stakeholders in scientific research : A sensemaking-sensegiving approach," Post-Print hal-01514751, HAL.
  32. Corine Genet & Khalid Errabi & Caroline Gauthier, 2012. "Which Model of Technology Transfer for Nanotechnology? A Comparison with Biotech and Microelectronics," Post-Print hal-00749152, HAL.
  33. Leila Tahmooresnejad & Catherine Beaudry & Andrea Schiffauerova, 2015. "The role of public funding in nanotechnology scientific production: Where Canada stands in comparison to the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 753-787, January.
  34. Na Liu & Philip Shapira & Xiaoxu Yue, 2021. "Tracking developments in artificial intelligence research: constructing and applying a new search strategy," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3153-3192, April.
  35. Tomaz Bartol & Karmen Stopar, 2015. "Nano language and distribution of article title terms according to power laws," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 435-451, May.
  36. Beaudry, Catherine & Allaoui, Sedki, 2012. "Impact of public and private research funding on scientific production: The case of nanotechnology," Research Policy, Elsevier, vol. 41(9), pages 1589-1606.
  37. Sercan Ozcan & Nazrul Islam, 2017. "Patent information retrieval: approaching a method and analysing nanotechnology patent collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 941-970, May.
  38. Alessandra Colombelli & Jackie Krafft & Francesco Quatraro, 2012. "The emergence of new technology-based sectors at the regional level: a proximity-based analysis of nanotechnology," Papers in Evolutionary Economic Geography (PEEG) 1211, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2012.
  39. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
  40. Kostoff, Ronald N., 2008. "Comparison of China/USA science and technology performance," Journal of Informetrics, Elsevier, vol. 2(4), pages 354-363.
  41. Wang, Gangbo & Guan, Jiancheng, 2010. "The role of patenting activity for scientific research: A study of academic inventors from China's nanotechnology," Journal of Informetrics, Elsevier, vol. 4(3), pages 338-350.
  42. Guo Chen & Jing Chen & Yu Shao & Lu Xiao, 2023. "Automatic noise reduction of domain-specific bibliographic datasets using positive-unlabeled learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1187-1204, February.
  43. Jiancheng Guan & Yuan Shi, 2012. "Transnational citation, technological diversity and small world in global nanotechnology patenting," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 609-633, December.
  44. Santiago Ruiz-Navas & Kumiko Miyazaki, 2018. "A complement to lexical query’s search-term selection for emerging technologies: the case of “big data”," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 141-162, October.
  45. Mogoutov, Andrei & Cambrosio, Alberto & Keating, Peter & Mustar, Philippe, 2008. "Biomedical innovation at the laboratory, clinical and commercial interface: A new method for mapping research projects, publications and patents in the field of microarrays," Journal of Informetrics, Elsevier, vol. 2(4), pages 341-353.
  46. Bordoloi, Tausif & Shapira, Philip & Mativenga, Paul, 2022. "Policy interactions with research trajectories: The case of cyber-physical convergence in manufacturing and industrials," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  47. Barirani, Ahmad & Beaudry, Catherine & Agard, Bruno, 2017. "Can universities profit from general purpose inventions? The case of Canadian nanotechnology patents," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 271-283.
  48. Ehsan Mohammadi, 2012. "Knowledge mapping of the Iranian nanoscience and technology: a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 593-608, September.
  49. Loet Leydesdorff & Caroline Wagner, 2009. "Is the United States losing ground in science? A global perspective on the world science system," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 23-36, January.
  50. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
  51. Florian Kreuchauff & Vladimir Korzinov, 2017. "A patent search strategy based on machine learning for the emerging field of service robotics," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 743-772, May.
  52. Philippe Larédo & Carole Rieu & Lionel Villard & Bernard Kahane & Aurélie Delemarle & Corine Genet & Vincent Mangematin, 2009. "Emergence des nanotechnologies : Vers un nouveau "modèle industriel "?," Post-Print hal-00424261, HAL.
  53. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2014. "The emergence of new technology-based sectors in European regions: A proximity-based analysis of nanotechnology," Research Policy, Elsevier, vol. 43(10), pages 1681-1696.
  54. Karmen Stopar & Damjana Drobne & Klemen Eler & Tomaz Bartol, 2016. "Citation analysis and mapping of nanoscience and nanotechnology: identifying the scope and interdisciplinarity of research," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 563-581, February.
  55. Theresa Velden & Asif-ul Haque & Carl Lagoze, 2010. "A new approach to analyzing patterns of collaboration in co-authorship networks: mesoscopic analysis and interpretation," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 219-242, October.
  56. Christina G. Siontorou, 2023. "Fair Development Transition of Lignite Areas: Key Challenges and Sustainability Prospects," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
  57. Kreuchauff, Florian & Korzinov, Vladimir, 2015. "A patent search strategy based on machine learning for the emerging field of service robotics," Working Paper Series in Economics 71, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  58. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
  59. Aashish Mehta & Patrick Herron & Yasuyuki Motoyama & Richard Appelbaum & Timothy Lenoir, 2012. "Globalization and de-globalization in nanotechnology research: the role of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 439-458, November.
  60. Caroline Gauthier & Corine Genet, 2014. "Nanotechnologies and Green Knowledge Creation: Paradox or Enhancer of Sustainable Solutions?," Journal of Business Ethics, Springer, vol. 124(4), pages 571-583, November.
  61. Leila Tahmooresnejad & Catherine Beaudry, 2019. "Collaboration or funding: lessons from a study of nanotechnology patenting in Canada and the United States," The Journal of Technology Transfer, Springer, vol. 44(3), pages 741-777, June.
  62. Li, Munan & Porter, Alan L. & Suominen, Arho & Burmaoglu, Serhat & Carley, Stephen, 2021. "An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
  63. Philippe Larédo & Carole Rieu & Lionel Villard & Bernard Kahane & Aurélie Delemarle & Corine Genet & Vincent Mangematin, 2009. "Emergence des nanotechnologies : Vers un nouveau "modèle industriel "?," Grenoble Ecole de Management (Post-Print) hal-00424261, HAL.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.