IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v153y2022ics1364032121010285.html
   My bibliography  Save this item

A review of very short-term wind and solar power forecasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  2. Juan M. Lujano-Rojas & Rodolfo Dufo-López & Jesús Sergio Artal-Sevil & Eduardo García-Paricio, 2023. "Searching for Promisingly Trained Artificial Neural Networks," Forecasting, MDPI, vol. 5(3), pages 1-26, September.
  3. Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
  4. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
  5. Zhong, Mingwei & Fan, Jingmin & Luo, Jianqiang & Xiao, Xuanyi & He, Guanglin & Cai, Rui, 2024. "InfoCAVB-MemoryFormer: Forecasting of wind and photovoltaic power through the interaction of data reconstruction and data augmentation," Applied Energy, Elsevier, vol. 371(C).
  6. Xuguang Han & Jingming Su & Yan Hong & Pingshun Gong & Danping Zhu, 2022. "Mid- to Long-Term Electric Load Forecasting Based on the EMD–Isomap–Adaboost Model," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
  7. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
  8. Paulescu, Marius & Blaga, Robert & Dughir, Ciprian & Stefu, Nicoleta & Sabadus, Andreea & Calinoiu, Delia & Badescu, Viorel, 2023. "Intra-hour PV power forecasting based on sky imagery," Energy, Elsevier, vol. 279(C).
  9. Meng, Anbo & Xie, Zhifeng & Luo, Jianqiang & Zeng, Ying & Xu, Xuancong & Li, Yidian & Wu, Zhenbo & Zhang, Zhan & Zhu, Jianbin & Xian, Zikang & Li, Chen & Yan, Baiping & Yin, Hao, 2023. "An adaptive variational mode decomposition for wind power prediction using convolutional block attention deep learning network," Energy, Elsevier, vol. 282(C).
  10. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
  11. Lu, Peng & Yang, Jianbin & Ye, Lin & Zhang, Ning & Wang, Yaqing & Di, Jingyi & Gao, Ze & Wang, Cheng & Liu, Mingyang, 2024. "A novel adaptively combined model based on induced ordered weighted averaging for wind power forecasting," Renewable Energy, Elsevier, vol. 226(C).
  12. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
  13. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
  14. Jincun Liu & Kangji Li & Wenping Xue, 2024. "Photovoltaic Solar Power Prediction Using iPSO-Based Data Clustering and AdaLSTM Network," Energies, MDPI, vol. 17(7), pages 1-21, March.
  15. Al-qaness, Mohammed A.A. & Ewees, Ahmed A. & Fan, Hong & Abualigah, Laith & Elaziz, Mohamed Abd, 2022. "Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting," Applied Energy, Elsevier, vol. 314(C).
  16. Wang, Xuguang & Li, Xiao & Su, Jie, 2023. "Distribution drift-adaptive short-term wind speed forecasting," Energy, Elsevier, vol. 273(C).
  17. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
  18. Jingtao Huang & Gang Niu & Haiping Guan & Shuzhong Song, 2023. "Ultra-Short-Term Wind Power Prediction Based on LSTM with Loss Shrinkage Adam," Energies, MDPI, vol. 16(9), pages 1-13, April.
  19. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
  20. de Azevedo Takara, Lucas & Teixeira, Ana Clara & Yazdanpanah, Hamed & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2024. "Optimizing multi-step wind power forecasting: Integrating advanced deep neural networks with stacking-based probabilistic learning," Applied Energy, Elsevier, vol. 369(C).
  21. Yang, Mao & Wang, Da & Zhang, Wei, 2023. "A short-term wind power prediction method based on dynamic and static feature fusion mining," Energy, Elsevier, vol. 280(C).
  22. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
  23. Bowen Zhou & Xinyu Chen & Guangdi Li & Peng Gu & Jing Huang & Bo Yang, 2023. "XGBoost–SFS and Double Nested Stacking Ensemble Model for Photovoltaic Power Forecasting under Variable Weather Conditions," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
  24. Hou, Guolian & Wang, Junjie & Fan, Yuzhen & Zhang, Jianhua & Huang, Congzhi, 2024. "A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation," Renewable Energy, Elsevier, vol. 226(C).
  25. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
  26. Wang, Chao & Lin, Hong & Hu, Heng & Yang, Ming & Ma, Li, 2024. "A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction," Energy, Elsevier, vol. 293(C).
  27. Md Motinur Rahman & Saikot Hossain Dadon & Miao He & Michael Giesselmann & Md Mahmudul Hasan, 2024. "An Overview of Power System Flexibility: High Renewable Energy Penetration Scenarios," Energies, MDPI, vol. 17(24), pages 1-31, December.
  28. Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
  29. Serdal Atiç & Ercan Izgi, 2024. "Smart Reserve Planning Using Machine Learning Methods in Power Systems with Renewable Energy Sources," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
  30. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  31. Zhang, Zongwei & Lin, Lianlei & Gao, Sheng & Wang, Junkai & Zhao, Hanqing, 2024. "Wind speed prediction in China with fully-convolutional deep neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
  32. Kim, Jimin & Obregon, Josue & Park, Hoonseok & Jung, Jae-Yoon, 2024. "Multi-step photovoltaic power forecasting using transformer and recurrent neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.