IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v77y2015icp1-8.html
   My bibliography  Save this item

Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
  2. Ndukwu, Macmanus Chinenye & Akpan, Godwin & Okeahialam, Azubuike N. & Umoh, John D. & Ubuoh, Emmanuel A. & Benjamine, Uchechukwu G. & Nwachukwu, Chris & Kalu, Confidence A. & Mbanasor, Jude & Wu, Hong, 2023. "A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover," Renewable Energy, Elsevier, vol. 216(C).
  3. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  4. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
  5. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
  6. Khaled A. Metwally & Awad Ali Tayoush Oraiath & I. M. Elzein & Tamer M. El-Messery & Claude Nyambe & Mohamed Metwally Mahmoud & Mohamed Anwer Abdeen & Ahmad A. Telba & Usama Khaled & Abderrahmane Bero, 2024. "The Mathematical Modeling, Diffusivity, Energy, and Enviro-Economic Analysis (MD3E) of an Automatic Solar Dryer for Drying Date Fruits," Sustainability, MDPI, vol. 16(8), pages 1-29, April.
  7. Muñoz-Liesa, Joan & Royapoor, Mohammad & López-Capel, Elisa & Cuerva, Eva & Rufí-Salís, Martí & Gassó-Domingo, Santiago & Josa, Alejandro, 2020. "Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse," Renewable Energy, Elsevier, vol. 156(C), pages 696-709.
  8. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
  9. Ag Sufiyan Abd Hamid & Mohamad Zul Hilmey Makmud & Abu Bakar Abd Rahman & Zuhair Jamain & Adnan Ibrahim, 2021. "Investigation of Potential of Solar Photovoltaic System as an Alternative Electric Supply on the Tropical Island of Mantanani Sabah Malaysia," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
  10. S Ayyappan, 2018. "Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying," Energy & Environment, , vol. 29(8), pages 1482-1494, December.
  11. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  12. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
  13. Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Kumar, Anil & Bensaci, Cheyma & Xiao, Hong-Wei, 2022. "Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste," Energy, Elsevier, vol. 243(C).
  14. Baniasadi, Ehsan & Ranjbar, Saeed & Boostanipour, Omid, 2017. "Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage," Renewable Energy, Elsevier, vol. 112(C), pages 143-150.
  15. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
  16. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
  17. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
  18. Philip, Nadiya & Duraipandi, Sruthi & Sreekumar, A., 2022. "Techno-economic analysis of greenhouse solar dryer for drying agricultural produce," Renewable Energy, Elsevier, vol. 199(C), pages 613-627.
  19. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
  20. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
  21. Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
  22. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
  23. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
  24. Samimi-Akhijahani, Hadi & Arabhosseini, Akbar, 2018. "Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system," Renewable Energy, Elsevier, vol. 123(C), pages 428-438.
  25. Fadhel, Abdelhamid & Charfi, Kais & Balghouthi, Moncef & Kooli, Sami, 2018. "Experimental investigation of the solar drying of Tunisian phosphate under different conditions," Renewable Energy, Elsevier, vol. 116(PA), pages 762-774.
  26. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
  27. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
  28. Abdallah Elshawadfy Elwakeel & Mohsen A. Gameh & Awad Ali Tayoush Oraiath & Ahmed S. Eissa & Salah Elsayed & Wael M. Elmessery & Mostafa B. Mostafa & Sadeq K. Alhag & Laila A. Al-Shuraym & Moustapha E, 2024. "Development and Techno-Economic Analysis of a Tracked Indirect Forced Solar Dryer Integrated Photovoltaic System for Drying Tomatoes," Sustainability, MDPI, vol. 16(16), pages 1-29, August.
  29. Poblete, Rodrigo & Cortes, Ernesto & Macchiavello, Juan & Bakit, José, 2018. "Factors influencing solar drying performance of the red algae Gracilaria chilensis," Renewable Energy, Elsevier, vol. 126(C), pages 978-986.
  30. Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
  31. Lahnine, Lamyae & Idlimam, Ali & Mostafa Mahrouz, & Mghazli, Safa & Hidar, Nadia & Hanine, Hafida & Koutit, Abbes, 2016. "Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process," Renewable Energy, Elsevier, vol. 94(C), pages 72-80.
  32. Abubakar, S. & Umaru, S. & Kaisan, M.U. & Umar, U.A. & Ashok, B. & Nanthagopal, K., 2018. "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage," Renewable Energy, Elsevier, vol. 128(PA), pages 285-298.
  33. Arun, K.R. & Kunal, G. & Srinivas, M. & Kumar, C.S. Sujith & Mohanraj, M. & Jayaraj, S., 2020. "Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage," Energy, Elsevier, vol. 192(C).
  34. Mobtaker, Hassan Ghasemi & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2019. "Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation," Renewable Energy, Elsevier, vol. 135(C), pages 88-97.
  35. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
  36. Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
  37. Tiwari, Sumit & Tiwari, G.N., 2016. "Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer," Energy, Elsevier, vol. 114(C), pages 155-164.
  38. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 105(C), pages 583-589.
  39. Azam, Mostafa M. & Eltawil, Mohamed A. & Amer, Baher M.A., 2020. "Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes," Energy, Elsevier, vol. 212(C).
  40. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
  41. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Singh, Manpreet, 2021. "A novel active-mode indirect solar dryer for agricultural products: Experimental evaluation and economic feasibility," Energy, Elsevier, vol. 222(C).
  42. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
  43. Kareem, M.W. & Habib, Khairul & Sopian, K. & Ruslan, M.H., 2017. "Multi-pass solar air heating collector system for drying of screw-pine leaf (Pandanus tectorius)," Renewable Energy, Elsevier, vol. 112(C), pages 413-424.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.