IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v47y2012icp160-166.html
   My bibliography  Save this item

A test on DI diesel engine fueled with methyl esters of used palm oil

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  2. Wong, Pak Kin & Wong, Ka In & Vong, Chi Man & Cheung, Chun Shun, 2015. "Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search," Renewable Energy, Elsevier, vol. 74(C), pages 640-647.
  3. Nirmala, N. & Dawn, S.S. & Harindra, C., 2020. "Analysis of performance and emission characteristics of Waste cooking oil and Chlorella variabilis MK039712.1 biodiesel blends in a single cylinder, four strokes diesel engine," Renewable Energy, Elsevier, vol. 147(P1), pages 284-292.
  4. Ahmad Fitri Yusop & Rizalman Mamat & Talal Yusaf & Gholamhassan Najafi & Mohd Hafizil Mat Yasin & Akasyah Mohd Khathri, 2018. "Analysis of Particulate Matter (PM) Emissions in Diesel Engines Using Palm Oil Biodiesel Blended with Diesel Fuel," Energies, MDPI, vol. 11(5), pages 1-25, April.
  5. Flavio Caresana & Marco Bietresato & Massimiliano Renzi, 2021. "Injection and Combustion Analysis of Pure Rapeseed Oil Methyl Ester (RME) in a Pump-Line-Nozzle Fuel Injection System," Energies, MDPI, vol. 14(22), pages 1-25, November.
  6. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
  7. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
  8. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
  9. Norwazan Abdul Rahim & Mohammad Nazri Mohd Jaafar & Syazwana Sapee & Hazir Farouk Elraheem, 2016. "Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner," Energies, MDPI, vol. 9(8), pages 1-18, August.
  10. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
  11. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
  12. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
  13. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
  14. Rizwanul Fattah, I.M. & Masjuki, H.H. & Liaquat, A.M. & Ramli, Rahizar & Kalam, M.A. & Riazuddin, V.N., 2013. "Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 552-567.
  15. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
  16. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  17. Metawea, Rodaina & Zewail, Taghreed & El-Ashtoukhy, El-Sayed & El Gheriany, Iman & Hamad, Hesham, 2018. "Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles," Energy, Elsevier, vol. 158(C), pages 111-120.
  18. Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
  19. Senthil, Ramalingam & Pranesh, Ganesan & Silambarasan, Rajendran, 2019. "Leaf extract additives: A solution for reduction of NOx emission in a biodiesel operated compression ignition engine," Energy, Elsevier, vol. 175(C), pages 862-878.
  20. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).
  21. Monirul, I.M. & Kalam, M.A. & Masjuki, H.H. & Zulkifli, N.W.M. & Shahir, S.A. & Mosarof, M.H. & Ruhul, A.M., 2017. "Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions," Renewable Energy, Elsevier, vol. 101(C), pages 702-712.
  22. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
  23. Ruhul, A.M. & Kalam, M.A. & Masjuki, H.H. & Shahir, S.A. & Alabdulkarem, Abdullah & Teoh, Y.H. & How, H.G. & Reham, S.S., 2017. "Evaluating combustion, performance and emission characteristics of Millettia pinnata and Croton megalocarpus biodiesel blends in a diesel engine," Energy, Elsevier, vol. 141(C), pages 2362-2376.
  24. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
  25. Eiadtrong, Suppakit & Maliwan, Kittinan & Prateepchaikul, Gumpon & Kattiyawan, Taweesak & Thephsorn, Pongsakorns & Leevijit, Theerayut, 2019. "Preparation, important fuel properties, and comparative use of un-preheated palm fatty acid distillate-diesel blends in a single cylinder diesel engine," Renewable Energy, Elsevier, vol. 134(C), pages 1089-1098.
  26. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.