IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v33y2008i4p703-711.html
   My bibliography  Save this item

Swedish solar heated residential area with seasonal storage in rock: Initial evaluation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhu, Li & Chen, Sarula & Yang, Yang & Sun, Yong, 2019. "Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions," Renewable Energy, Elsevier, vol. 131(C), pages 494-505.
  2. Antoniadis, Christodoulos N. & Martinopoulos, Georgios, 2019. "Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS," Renewable Energy, Elsevier, vol. 137(C), pages 56-66.
  3. Ushamah, Hafiz Muhammad & Ahmed, Naveed & Elfeky, K.E. & Mahmood, Mariam & Qaisrani, Mumtaz A. & Waqas, Adeel & Zhang, Qian, 2022. "Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan," Renewable Energy, Elsevier, vol. 199(C), pages 1639-1656.
  4. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
  5. Atam, Ercan & Helsen, Lieve, 2016. "Ground-coupled heat pumps: Part 2—Literature review and research challenges in optimal design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1668-1684.
  6. Paiho, Satu & Reda, Francesco, 2016. "Towards next generation district heating in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 915-924.
  7. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
  8. Paiho, Satu & Hoang, Ha & Hukkalainen, Mari, 2017. "Energy and emission analyses of solar assisted local energy solutions with seasonal heat storage in a Finnish case district," Renewable Energy, Elsevier, vol. 107(C), pages 147-155.
  9. Elhashmi, Rodwan & Hallinan, Kevin P. & Chiasson, Andrew D., 2020. "Low-energy opportunity for multi-family residences: A review and simulation-based study of a solar borehole thermal energy storage system," Energy, Elsevier, vol. 204(C).
  10. Zhang, Liang & Xu, Peng & Mao, Jiachen & Tang, Xu & Li, Zhengwei & Shi, Jianguo, 2015. "A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study," Applied Energy, Elsevier, vol. 156(C), pages 213-222.
  11. Nilsson, Emil & Rohdin, Patrik, 2019. "Performance evaluation of an industrial borehole thermal energy storage (BTES) project – Experiences from the first seven years of operation," Renewable Energy, Elsevier, vol. 143(C), pages 1022-1034.
  12. Kalantari, Hosein & Sasmito, Agus P. & Ghoreishi-Madiseh, Seyed Ali, 2021. "An overview of directions for decarbonization of energy systems in cold climate remote mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  13. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
  14. Seyed Ali Ghoreishi-Madiseh & Ali Fahrettin Kuyuk & Marco Antonio Rodrigues de Brito & Durjoy Baidya & Zahra Torabigoodarzi & Amir Safari, 2019. "Application of Borehole Thermal Energy Storage in Waste Heat Recovery from Diesel Generators in Remote Cold Climate Locations," Energies, MDPI, vol. 12(4), pages 1-14, February.
  15. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
  16. Badenes, Borja & Sanner, Burkhard & Mateo Pla, Miguel Ángel & Cuevas, José Manuel & Bartoli, Flavia & Ciardelli, Francesco & González, Rosa M. & Ghafar, Ali Nejad & Fontana, Patrick & Lemus Zuñiga, Le, 2020. "Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)," Energy, Elsevier, vol. 201(C).
  17. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
  18. Tordrup, K.W. & Poulsen, S.E. & Bjørn, H., 2017. "An improved method for upscaling borehole thermal energy storage using inverse finite element modelling," Renewable Energy, Elsevier, vol. 105(C), pages 13-21.
  19. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
  20. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.
  21. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
  22. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
  23. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
  24. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2022. "Validations of a double U-tube borehole model and a seasonal solar thermal energy storage system model," Renewable Energy, Elsevier, vol. 201(P1), pages 462-485.
  25. Emil Nilsson & Patrik Rohdin, 2019. "Empirical Validation and Numerical Predictions of an Industrial Borehole Thermal Energy Storage System," Energies, MDPI, vol. 12(12), pages 1-20, June.
  26. Hirvijoki, Eero & Hirvonen, Janne, 2022. "The potential of intermediate-to-deep geothermal boreholes for seasonal storage of district heat," Renewable Energy, Elsevier, vol. 198(C), pages 825-832.
  27. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
  28. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
  29. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
  30. Hassam ur Rehman & Janne Hirvonen & Juha Jokisalo & Risto Kosonen & Kai Sirén, 2020. "EU Emission Targets of 2050: Costs and CO 2 Emissions Comparison of Three Different Solar and Heat Pump-Based Community-Level District Heating Systems in Nordic Conditions," Energies, MDPI, vol. 13(16), pages 1-31, August.
  31. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W., 2014. "Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application," Energy, Elsevier, vol. 67(C), pages 63-73.
  32. Chambers, Jonathan & Zuberi, S. & Jibran, M. & Narula, Kapil & Patel, Martin K., 2020. "Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland," Energy, Elsevier, vol. 192(C).
  33. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  34. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
  35. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
  36. Le Minh Nhut & Waseem Raza & Youn Cheol Park, 2020. "A Parametric Study of a Solar-Assisted House Heating System with a Seasonal Underground Thermal Energy Storage Tank," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
  37. Templeton, J.D. & Hassani, F. & Ghoreishi-Madiseh, S.A., 2016. "Study of effective solar energy storage using a double pipe geothermal heat exchanger," Renewable Energy, Elsevier, vol. 86(C), pages 173-181.
  38. Veyron, Mathilde & Voirand, Antoine & Mion, Nicolas & Maragna, Charles & Mugnier, Daniel & Clausse, Marc, 2022. "Dynamic exergy and economic assessment of the implementation of seasonal underground thermal energy storage in existing solar district heating," Energy, Elsevier, vol. 261(PA).
  39. Hirvonen, Janne & Sirén, Kai, 2018. "A novel fully electrified solar heating system with a high renewable fraction - Optimal designs for a high latitude community," Renewable Energy, Elsevier, vol. 127(C), pages 298-309.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.