IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v168y2017icp98-104.html
   My bibliography  Save this item

A cost-based integrated importance measure of system components for preventive maintenance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  2. Fan, Dongming & Zhang, Aibo & Feng, Qiang & Cai, Baoping & Liu, Yiliu & Ren, Yi, 2021. "Group maintenance optimization of subsea Xmas trees with stochastic dependency," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  3. Dui, Hongyan & Tian, Tianzi & Wu, Shaomin & Xie, Min, 2023. "A cost-informed component maintenance index and its applications," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  4. Do, Phuc & Bérenguer, Christophe, 2020. "Conditional reliability-based importance measures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  5. Xu, Zhaoping & Ramirez-Marquez, Jose Emmanuel & Liu, Yu & Xiahou, Tangfan, 2020. "A new resilience-based component importance measure for multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  6. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  7. Xing Pan & Lunhu Hu & Ziling Xin & Shenghan Zhou & Yanmei Lin & Yong Wu, 2018. "Risk Scenario Generation Based on Importance Measure Analysis," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
  8. Xian Zhao & Xinqian Huang & Jinglei Sun, 2020. "Reliability modeling and maintenance optimization for the two-unit system with preset self-repairing mechanism," Journal of Risk and Reliability, , vol. 234(2), pages 221-234, April.
  9. Chen, Yuan & Qiu, Qingan & Zhao, Xian, 2022. "Condition-based opportunistic maintenance policies with two-phase inspections for continuous-state systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  10. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  11. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
  12. Zhang, Mimi, 2020. "A heuristic policy for maintaining multiple multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  13. Lyu, Dong & Si, Shubin, 2020. "Dynamic importance measure for the K-out-of-n: G system under repeated random load," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  14. Liu, Mingli & Wang, Dan & Si, Shubin, 2024. "Solving algorithm design for the cost minimization reliability optimization model driven by a novel cost-based importance measure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  15. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
  16. Yeh, Wei-Chang, 2022. "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  17. Dui, Hongyan & Lu, Yaohui & Chen, Liwei, 2024. "Importance-based system cost management and failure risk analysis for different phases in life cycle," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  18. Yadong Zhang & Chao Zhang & Shaoping Wang & Rentong Chen & Mileta M. Tomovic, 2022. "Performance Degradation Based on Importance Change and Application in Dissimilar Redundancy Actuation System," Mathematics, MDPI, vol. 10(5), pages 1-15, March.
  19. Xiaofeng Wang & Shu Guo & Jian Shen & Yang Liu, 2020. "Optimization of preventive maintenance for series manufacturing system by differential evolution algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 745-757, March.
  20. Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  21. Zhao, Xian & Guo, Bin & Chen, Yuan, 2024. "A condition-based inspection-maintenance policy for critical systems with an unreliable monitor system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  22. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  23. Ma, Chenyang & Wang, Qiyu & Cai, Zhiqiang & Si, Shubin & Zhao, Jiangbin, 2021. "Component reassignment for reliability optimization of reconfigurable systems considering component degradation," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  24. Chen, Liwei & Gao, Yansan & Dui, Hongyan & Xing, Liudong, 2021. "Importance measure-based maintenance optimization strategy for pod slewing system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  25. Xianzhen Huang & Frank PA Coolen, 2018. "Reliability sensitivity analysis of coherent systems based on survival signature," Journal of Risk and Reliability, , vol. 232(6), pages 627-634, December.
  26. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  27. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.