IDEAS home Printed from https://ideas.repec.org/r/eee/jotrge/v18y2010i6p715-728.html
   My bibliography  Save this item

A spatially explicit techno-economic model of bioenergy and biofuels production in California

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lo, Shirleen Lee Yuen & How, Bing Shen & Teng, Sin Yong & Lam, Hon Loong & Lim, Chun Hsion & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  2. Suckling, Ian D. & de Miguel Mercader, Ferran & Monge, Juan J. & Wakelin, Steve J. & Hall, Peter W. & Bennett, Paul J. & Höck, Barbara & Samsatli, Nouri J. & Samsatli, Sheila & Fahmy, Muthasim, 2022. "Best options for large-scale production of liquid biofuels by value chain modelling: A New Zealand case study," Applied Energy, Elsevier, vol. 323(C).
  3. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
  4. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
  5. Scheitrum, Daniel, 2017. "Renewable Natural Gas as a Solution to Climate Goals: Response to California's Low Carbon Fuel Standard," MPRA Paper 77193, University Library of Munich, Germany.
  6. Christensen, Adam & Hobbs, Benjamin, 2016. "A model of state and federal biofuel policy: Feasibility assessment of the California Low Carbon Fuel Standard," Applied Energy, Elsevier, vol. 169(C), pages 799-812.
  7. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
  8. Olli-Jussi Korpinen & Mika Aalto & Raghu KC & Timo Tokola & Tapio Ranta, 2023. "Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review," Energies, MDPI, vol. 16(2), pages 1-23, January.
  9. Samsatli, Sheila & Samsatli, Nouri J. & Shah, Nilay, 2015. "BVCM: A comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation – Mathematical formulation," Applied Energy, Elsevier, vol. 147(C), pages 131-160.
  10. Li, Yuanzhe, 2019. "Modeling Bioenergy Supply Chains: Feedstocks Pretreatment, Integrated System Design Under Uncertainty," Institute of Transportation Studies, Working Paper Series qt1539g5sj, Institute of Transportation Studies, UC Davis.
  11. Jayarathna, Lasinidu & Kent, Geoff & O'Hara, Ian & Hobson, Philip, 2020. "A Geographical Information System based framework to identify optimal location and size of biomass energy plants using single or multiple biomass types," Applied Energy, Elsevier, vol. 275(C).
  12. Laure Bamière, 2014. "A spatially explicit model to analyse the regional supply of ligno-cellulosic biomass," Working Papers 2014/01, INRA, Economie Publique.
  13. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
  14. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  15. Muratori, Matteo & Jadun, Paige & Bush, Brian & Bielen, David & Vimmerstedt, Laura & Gonder, Jeff & Gearhart, Chris & Arent, Doug, 2020. "Future integrated mobility-energy systems: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  16. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
  17. Wang, Wenyan & Ouyang, Wei & Hao, Fanghua & Liu, Genyuan, 2017. "Temporal-spatial variation analysis of agricultural biomass and its policy implication as an alternative energy in northeastern China," Energy Policy, Elsevier, vol. 109(C), pages 337-349.
  18. Scheitrum, Daniel & Myers Jaffe, Amy & Dominguez-Faus, Rosa & Parker, Nathan, 2017. "California low carbon fuel policies and natural gas fueling infrastructure: Synergies and challenges to expanding the use of RNG in transportation," Energy Policy, Elsevier, vol. 110(C), pages 355-364.
  19. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  20. Fazio, Simone & Barbanti, Lorenzo, 2014. "Energy and economic assessments of bio-energy systems based on annual and perennial crops for temperate and tropical areas," Renewable Energy, Elsevier, vol. 69(C), pages 233-241.
  21. Parker, Nathan & Williams, Robert & Dominguez-Faus, Rosa & Scheitrum, Daniel, 2017. "Renewable natural gas in California: An assessment of the technical and economic potential," Energy Policy, Elsevier, vol. 111(C), pages 235-245.
  22. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
  23. Senocak, Ahmet Alp & Guner Goren, Hacer, 2023. "Three-phase artificial intelligence-geographic information systems-based biomass network design approach: A case study in Denizli," Applied Energy, Elsevier, vol. 343(C).
  24. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
  25. Diogo, V. & van der Hilst, F. & van Eijck, J. & Verstegen, J.A. & Hilbert, J. & Carballo, S. & Volante, J. & Faaij, A., 2014. "Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 208-224.
  26. Krishnan, Venkat & McCalley, James D., 2016. "The role of bio-renewables in national energy and transportation systems portfolio planning for low carbon economy," Renewable Energy, Elsevier, vol. 91(C), pages 207-223.
  27. Md. Bedarul Alam & Reino Pulkki & Chander Shahi & Thakur Upadhyay, 2012. "Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada," Energies, MDPI, vol. 5(12), pages 1-21, December.
  28. Calderón, Andrés J. & Agnolucci, Paolo & Papageorgiou, Lazaros G., 2017. "An optimisation framework for the strategic design of synthetic natural gas (BioSNG) supply chains," Applied Energy, Elsevier, vol. 187(C), pages 929-955.
  29. Diogo, V. & Koomen, E. & Kuhlman, T., 2015. "An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study," Agricultural Systems, Elsevier, vol. 139(C), pages 1-16.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.