IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v44y1993i1p23-46.html
   My bibliography  Save this item

Nearest Neighbor Estimators for Random Fields

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
  2. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
  3. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
  4. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
  5. Gao, Jiti & Lu, Zudi & Tjøstheim, Dag, 2008. "Moment inequalities for spatial processes," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 687-697, April.
  6. Chu, Ba & Jacho-Chávez, David T., 2012. "k-NEAREST NEIGHBOR ESTIMATION OF INVERSE-DENSITY-WEIGHTED EXPECTATIONS WITH DEPENDENT DATA," Econometric Theory, Cambridge University Press, vol. 28(4), pages 769-803, August.
  7. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
  8. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
  9. Tsung-Lin Cheng & Hwai-Chung Ho & Xuewen Lu, 2008. "A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2," Journal of Theoretical Probability, Springer, vol. 21(2), pages 267-286, June.
  10. Robinson, P.M. & Vidal Sanz, J., 2006. "Modified Whittle estimation of multilateral models on a lattice," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1090-1120, May.
  11. Biau, Gérard, 2002. "Optimal asymptotic quadratic errors of density estimators on random fields," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 297-307, December.
  12. Kangning Wang, 2018. "Variable selection for spatial semivarying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 323-351, April.
  13. Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.
  14. Soutir Bandyopadhyay & Arnab Maity, 2018. "Asymptotic theory for varying coefficient regression models with dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 745-759, August.
  15. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
  16. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
  17. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
  18. Ming Yuan, 2003. "Deconvolving Multivariate Density from Random Field," Statistical Inference for Stochastic Processes, Springer, vol. 6(2), pages 135-153, May.
  19. Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
  20. Lee, Y. K. & Choi, H. & Park, B. U. & Yu, K. S., 2004. "Local likelihood density estimation on random fields," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 347-357, July.
  21. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
  22. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
  23. Salim Bouzebda, 2024. "Limit Theorems in the Nonparametric Conditional Single-Index U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 12(13), pages 1-81, June.
  24. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
  25. Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
  26. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
  27. Wentao Gu & Lanh Tran, 2009. "Fixed design regression for negatively associated random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 345-363.
  28. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
  29. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.