My bibliography
Save this item
Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Business failure prediction models with high and stable predictive power over time using genetic programming," Operational Research, Springer, vol. 24(3), pages 1-41, September.
- Basim Alzugaiby & Jairaj Gupta & Andrew Mullineux & Rizwan Ahmed, 2021. "Relevance of size in predicting bank failures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3504-3543, July.
- Carmona, Pedro & Dwekat, Aladdin & Mardawi, Zeena, 2022. "No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure," Research in International Business and Finance, Elsevier, vol. 61(C).
- Guerra, Pedro & Castelli, Mauro & Côrte-Real, Nadine, 2022. "Machine learning for liquidity risk modelling: A supervisory perspective," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 175-187.
- Małgorzata Iwanicz-Drozdowska & Krzysztof Jackowicz & Maciej Karczmarczyk, 2021. "“The Crooked Smile of TCR†: Banks’ Solvency and Restructuring Costs in the European Banking Industry," SAGE Open, , vol. 11(3), pages 21582440211, September.
- Pham, Xuan T.T. & Ho, Tin H., 2021. "Using boosting algorithms to predict bank failure: An untold story," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 40-54.
- Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2022.
"Predicting agri-food quality across space: A Machine Learning model for the acknowledgment of Geographical Indications,"
Food Policy, Elsevier, vol. 112(C).
- Resce, Giuliano & Vaquero-Pineiro, Cristina, 2022. "Predicting Agri-food Quality across Space: A Machine Learning Model for the Acknowledgment of Geographical Indications," Economics & Statistics Discussion Papers esdp22082, University of Molise, Department of Economics.
- Peter M. Clarkson & Jordan Ponn & Gordon D. Richardson & Frank Rudzicz & Albert Tsang & Jingjing Wang, 2020. "A Textual Analysis of US Corporate Social Responsibility Reports," Abacus, Accounting Foundation, University of Sydney, vol. 56(1), pages 3-34, March.
- Palvia, Ajay & Vähämaa, Emilia & Vähämaa, Sami, 2020. "Female leadership and bank risk-taking: Evidence from the effects of real estate shocks on bank lending performance and default risk," Journal of Business Research, Elsevier, vol. 117(C), pages 897-909.
- Hoang Hiep Nguyen & Jean-Laurent Viviani & Sami Ben Jabeur, 2023. "Bankruptcy prediction using machine learning and Shapley additive explanations," Post-Print hal-04223161, HAL.
- Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
- Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024.
"Predicting dropout from higher education: Evidence from Italy,"
Economic Modelling, Elsevier, vol. 130(C).
- Marco Delogu & Raffaelle Lagravinese & Dimitri Paolini & Giuliano Resce, 2020. "Predicting dropout from higher education: Evidence from Italy," DEM Discussion Paper Series 22-06, Department of Economics at the University of Luxembourg.
- Manthoulis, Georgios & Doumpos, Michalis & Zopounidis, Constantin & Galariotis, Emilios, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," European Journal of Operational Research, Elsevier, vol. 282(2), pages 786-801.
- Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Multiperiod Bankruptcy Prediction Models with Interpretable Single Models," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1357-1390, September.
- Sánchez-Franco, Manuel J. & Arenas-Márquez, Francisco J. & Alonso-Dos-Santos, Manuel, 2021. "Using structural topic modelling to predict users’ sentiment towards intelligent personal agents. An application for Amazon’s echo and Google Home," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
- Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
- Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
- de Jesus, Diego Pitta & Besarria, Cássio da Nóbrega, 2023. "Machine learning and sentiment analysis: Projecting bank insolvency risk," Research in Economics, Elsevier, vol. 77(2), pages 226-238.
- Tsai, Chih-Fong & Sue, Kuen-Liang & Hu, Ya-Han & Chiu, Andy, 2021. "Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction," Journal of Business Research, Elsevier, vol. 130(C), pages 200-209.
- Tânia Costa & Júlio Lobão & Luís Pacheco, 2023. "Reassessing bank monitoring models: an empirical analysis of the value of market signals in the period 2008–2020," Journal of Banking Regulation, Palgrave Macmillan, vol. 24(2), pages 206-227, June.
- Kristóf, Tamás & Virág, Miklós, 2022. "EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks," Research in International Business and Finance, Elsevier, vol. 61(C).
- Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Mariem Nsaibi, 2023. "Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 663-687, August.
- Angilella, Silvia & Doumpos, Michalis & Pappalardo, Maria Rosaria & Zopounidis, Constantin, 2024. "Assessing the performance of banks through an improved sigma-mu multicriteria analysis approach," Omega, Elsevier, vol. 127(C).
- Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Hwang, Syjung & Kim, Jina & Park, Eunil & Kwon, Sang Jib, 2020. "Who will be your next customer: A machine learning approach to customer return visits in airline services," Journal of Business Research, Elsevier, vol. 121(C), pages 121-126.
- Li Yao & He Ni, 2023. "Prediction of patent grant and interpreting the key determinants: an application of interpretable machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 4933-4969, September.