My bibliography
Save this item
A Bradley-Terry type model for forecasting tennis match results
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kovalchik, Stephanie, 2020. "Extension of the Elo rating system to margin of victory," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1329-1341.
- Blackburn McKinley L., 2013. "Ranking the performance of tennis players: an application to women’s professional tennis," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(4), pages 367-378, December.
- Kovalchik Stephanie Ann, 2016. "Searching for the GOAT of tennis win prediction," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(3), pages 127-138, September.
- Alberto Arcagni & Vincenzo Candila & Rosanna Grassi, 2023. "A new model for predicting the winner in tennis based on the eigenvector centrality," Annals of Operations Research, Springer, vol. 325(1), pages 615-632, June.
- Tomi Ovaska & Albert J. Sumell, 2014. "Who Has The Advantage? An Economic Exploration of Winning in Men's Professional Tennis," The American Economist, Sage Publications, vol. 59(1), pages 34-51, May.
- P. Gorgi & Siem Jan (S.J.) Koopman & R. Lit, 2018. "The analysis and forecasting of ATP tennis matches using a high-dimensional dynamic model," Tinbergen Institute Discussion Papers 18-009/III, Tinbergen Institute.
- Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
- Vincenzo Candila & Lucio Palazzo, 2020. "Neural Networks and Betting Strategies for Tennis," Risks, MDPI, vol. 8(3), pages 1-19, June.
- Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
- J. James Reade & Carl Singleton & Alasdair Brown, 2021.
"Evaluating strange forecasts: The curious case of football match scorelines,"
Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
- J. James Reade & Carl Singleton & Alasdair Brown, 2019. "Evaluating Strange Forecasts: The Curious Case of Football Match Scorelines," Economics Discussion Papers em-dp2019-18, Department of Economics, University of Reading, revised 01 Aug 2020.
- Baker, Rose D. & McHale, Ian G., 2014. "A dynamic paired comparisons model: Who is the greatest tennis player?," European Journal of Operational Research, Elsevier, vol. 236(2), pages 677-684.
- Araki, Kenji & Hirose, Yoshihiro & Komaki, Fumiyasu, 2019. "Paired comparison models with age effects modeled as piecewise quadratic splines," International Journal of Forecasting, Elsevier, vol. 35(2), pages 733-740.
- Ruud H. Koning & Ian G. McHale, 2012. "Estimating Match and World Cup Winning Probabilities," Chapters, in: Wolfgang Maennig & Andrew Zimbalist (ed.), International Handbook on the Economics of Mega Sporting Events, chapter 11, Edward Elgar Publishing.
- Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
- Jeremy K. Nguyen & Adam Karg & Abbas Valadkhani & Heath McDonald, 2022. "Predicting individual event attendance with machine learning: a ‘step-forward’ approach," Applied Economics, Taylor & Francis Journals, vol. 54(27), pages 3138-3153, June.
- Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
- Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
- He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
- Ian G. McHale & Philip A. Scarf & David E. Folker, 2012. "On the Development of a Soccer Player Performance Rating System for the English Premier League," Interfaces, INFORMS, vol. 42(4), pages 339-351, August.
- Marc Garnica-Caparrós & Daniel Memmert & Fabian Wunderlich, 2022. "Artificial data in sports forecasting: a simulation framework for analysing predictive models in sports," Information Systems and e-Business Management, Springer, vol. 20(3), pages 551-580, September.
- Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
- Bozóki, Sándor & Csató, László & Temesi, József, 2016. "An application of incomplete pairwise comparison matrices for ranking top tennis players," European Journal of Operational Research, Elsevier, vol. 248(1), pages 211-218.
- Deutscher, Christian & Neuberg, Lena & Thiem, Stefan, 2023. "Who’s afraid of the GOATs? - Shadow effects of tennis superstars," Journal of Economic Psychology, Elsevier, vol. 99(C).
- Kovalchik Stephanie Ann, 2016. "Is there a Pythagorean theorem for winning in tennis?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 43-49, March.
- Clive B Beggs & Alexander J Bond & Stacey Emmonds & Ben Jones, 2019. "Hidden dynamics of soccer leagues: The predictive ‘power’ of partial standings," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-28, December.
- Ramirez, Philip & Reade, J. James & Singleton, Carl, 2023.
"Betting on a buzz: Mispricing and inefficiency in online sportsbooks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1413-1423.
- Philip Ramirez & J. James Reade & Carl Singleton, 2021. "Betting on a buzz, mispricing and inefficiency in online sportsbooks," Economics Discussion Papers em-dp2021-10, Department of Economics, University of Reading, revised 27 Jul 2022.
- Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
- Vicente Rodríguez Montequín & Joaquín Manuel Villanueva Balsera & Marina Díaz Piloñeta & César Álvarez Pérez, 2020. "A Bradley-Terry Model-Based Approach to Prioritize the Balance Scorecard Driving Factors: The Case Study of a Financial Software Factory," Mathematics, MDPI, vol. 8(2), pages 1-15, February.
- Collingwood, James A.P. & Wright, Michael & Brooks, Roger J, 2022. "Evaluating the effectiveness of different player rating systems in predicting the results of professional snooker matches," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1025-1035.
- Sperb, Luis Felipe Costa & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2019. "Keeping a weather eye on prediction markets: The influence of environmental conditions on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 35(1), pages 321-335.
- Brown, Alasdair & Yang, Fuyu, 2019. "The wisdom of large and small crowds: Evidence from repeated natural experiments in sports betting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 288-296.
- Asif, M. & McHale, I.G., 2019. "A generalized non-linear forecasting model for limited overs international cricket," International Journal of Forecasting, Elsevier, vol. 35(2), pages 634-640.
- Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
- Irons David J. & Buckley Stephen & Paulden Tim, 2014. "Developing an improved tennis ranking system," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 109-118, June.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Evaluating professional tennis players’ career performance: A Data Envelopment Analysis approach," MPRA Paper 41516, University Library of Munich, Germany.