IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v12y2016i1p43-49n3.html
   My bibliography  Save this article

Is there a Pythagorean theorem for winning in tennis?

Author

Listed:
  • Kovalchik Stephanie Ann

    (Institute of Sport, Exercise & Active Living, Victoria University, Footscray Park, VIC, Australia)

Abstract

Bill James’ discovery of a Pythagorean formula for win expectation in baseball has been a useful resource to analysts and coaches for over 30 years. Extensions of the Pythagorean model have been developed for all of the major professional team sports but none of the individual sports. The present paper attempts to address this gap by deriving a Pythagorean model for win production in tennis. Using performance data for the top 100 male singles players between 2004 and 2014, this study shows that, among the most commonly reported performance statistics, a model of break points won provides the closest approximation to the Pythagorean formula, explaining 85% of variation in season wins and having the lowest cross-validation prediction error among the models considered. The mid-season projections of the break point model had performance that was comparable to an expanded model that included eight other serve and return statistics as well as player ranking. A simple match prediction algorithm based on a break point model with the previous 9 months of match history had a prediction accuracy of 67% when applied to 2015 match outcomes, whether using the least-squares or Pythagorean power coefficient. By demonstrating the striking similarity between the Pythagorean formula for baseball wins and the break point model for match wins in tennis, this paper has identified a potentially simple yet powerful analytic tool with a wide range of potential uses for player performance evaluation and match forecasting.

Suggested Citation

  • Kovalchik Stephanie Ann, 2016. "Is there a Pythagorean theorem for winning in tennis?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 43-49, March.
  • Handle: RePEc:bpj:jqsprt:v:12:y:2016:i:1:p:43-49:n:3
    DOI: 10.1515/jqas-2015-0057
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2015-0057
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2015-0057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630, April.
    2. Keith F. Gilsdorf & Vasant A. Sukhatme, 2008. "Testing Rosen's Sequential Elimination Tournament Model," Journal of Sports Economics, , vol. 9(3), pages 287-303, June.
    3. Raymond Stefani, 1997. "Survey of the major world sports rating systems," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(6), pages 635-646.
    4. Braunstein Alexander, 2010. "Consistency and Pythagoras," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(1), pages 1-16, January.
    5. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630.
    6. Klaassen F. J G M & Magnus J. R., 2001. "Are Points in Tennis Independent and Identically Distributed? Evidence From a Dynamic Binary Panel Data Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 500-509, June.
    7. Hamilton Howard H, 2011. "An Extension of the Pythagorean Expectation for Association Football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(2), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deutscher, Christian & Neuberg, Lena & Thiem, Stefan, 2023. "Who’s afraid of the GOATs? - Shadow effects of tennis superstars," Journal of Economic Psychology, Elsevier, vol. 99(C).
    2. Tomi Ovaska & Albert J. Sumell, 2014. "Who Has The Advantage? An Economic Exploration of Winning in Men's Professional Tennis," The American Economist, Sage Publications, vol. 59(1), pages 34-51, May.
    3. Ruud H. Koning & Ian G. McHale, 2012. "Estimating Match and World Cup Winning Probabilities," Chapters, in: Wolfgang Maennig & Andrew Zimbalist (ed.), International Handbook on the Economics of Mega Sporting Events, chapter 11, Edward Elgar Publishing.
    4. Alex Krumer & Mosi Rosenboim & Offer Moshe Shapir, 2016. "Gender, Competitiveness, and Physical Characteristics," Journal of Sports Economics, , vol. 17(3), pages 234-259, April.
    5. Baker, Rose D. & McHale, Ian G., 2014. "A dynamic paired comparisons model: Who is the greatest tennis player?," European Journal of Operational Research, Elsevier, vol. 236(2), pages 677-684.
    6. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    7. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    8. Ian G. McHale & Philip A. Scarf & David E. Folker, 2012. "On the Development of a Soccer Player Performance Rating System for the English Premier League," Interfaces, INFORMS, vol. 42(4), pages 339-351, August.
    9. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    10. Kovalchik Stephanie Ann, 2016. "Searching for the GOAT of tennis win prediction," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(3), pages 127-138, September.
    11. He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
    12. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
    13. Clive B Beggs & Alexander J Bond & Stacey Emmonds & Ben Jones, 2019. "Hidden dynamics of soccer leagues: The predictive ‘power’ of partial standings," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-28, December.
    14. Ramirez, Philip & Reade, J. James & Singleton, Carl, 2023. "Betting on a buzz: Mispricing and inefficiency in online sportsbooks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1413-1423.
    15. Irons David J. & Buckley Stephen & Paulden Tim, 2014. "Developing an improved tennis ranking system," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 109-118, June.
    16. Halkos, George & Tzeremes, Nickolaos, 2012. "Evaluating professional tennis players’ career performance: A Data Envelopment Analysis approach," MPRA Paper 41516, University Library of Munich, Germany.
    17. Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
    18. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    19. Alex Krumer, 2017. "On Winning Probabilities, Weight Categories, and Home Advantage in Professional Judo," Journal of Sports Economics, , vol. 18(1), pages 77-96, January.
    20. del Corral, Julio & Prieto-Rodríguez, Juan, 2010. "Are differences in ranks good predictors for Grand Slam tennis matches?," International Journal of Forecasting, Elsevier, vol. 26(3), pages 551-563, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:12:y:2016:i:1:p:43-49:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.