IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v27y2011i2p333-346.html
   My bibliography  Save this item

A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Katja Drechsel & Laurent Maurin, 2011. "Flow of conjunctural information and forecast of euro area economic activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 336-354, April.
  2. Lamprou, Dimitra, 2016. "Nowcasting GDP in Greece: The impact of data revisions and forecast origin on model selection and performance," The Journal of Economic Asymmetries, Elsevier, vol. 14(PA), pages 93-102.
  3. C. Thubin & T. Ferrière & E. Monnet & M. Marx & V. Oung, 2016. "The PRISME model: can disaggregation on the production side help to forecast GDP?," Working papers 596, Banque de France.
  4. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
  5. Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
  6. repec:dau:papers:123456789/10079 is not listed on IDEAS
  7. Audrone Jakaitiene & Stephane Dees, 2012. "Forecasting the World Economy in the Short Term," The World Economy, Wiley Blackwell, vol. 35(3), pages 331-350, March.
  8. P�r Österholm, 2014. "Survey data and short-term forecasts of Swedish GDP growth," Applied Economics Letters, Taylor & Francis Journals, vol. 21(2), pages 135-139, January.
  9. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
  10. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
  11. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
  12. Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity In Real Time: The Role Of Confidence Indicators," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 90-97, October.
  13. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
  14. Bouwman, Kees E. & Jacobs, Jan P.A.M., 2011. "Forecasting with real-time macroeconomic data: The ragged-edge problem and revisions," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 784-792.
  15. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
  16. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
  17. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
  18. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
  19. Marie Bessec & Othman Bouabdallah, 2015. "Forecasting GDP over the Business Cycle in a Multi-Frequency and Data-Rich Environment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 360-384, June.
  20. Darracq Pariès, Matthieu & Maurin, Laurent, 2008. "The role of country-specific trade and survey data in forecasting euro area manufacturing production: perspective from large panel factor models," Working Paper Series 894, European Central Bank.
  21. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
  22. R. Lehmann & K. Wohlrabe, 2016. "Looking into the black box of boosting: the case of Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 23(17), pages 1229-1233, November.
  23. Siliverstovs Boriss & Kholodilin Konstantin A., 2012. "Assessing the Real-Time Informational Content of Macroeconomic Data Releases for Now-/Forecasting GDP: Evidence for Switzerland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 429-444, August.
  24. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
  25. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
  26. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
  27. Roland Döhrn & Philipp an de Meulen & Tobias Kitlinski & Martin Micheli & Torsten Schmidt & Simeon Vosen & György Barabas & Heinz Gebhardt & Lina Zimmermann, 2011. "Die wirtschaftliche Entwicklung im Inland zur Jahresmitte 2011 - Zunehmende Risiken für die Konjunktur," RWI Konjunkturbericht, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, pages 50, 09.
  28. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
  29. Dahlhaus, Tatjana & Guénette, Justin-Damien & Vasishtha, Garima, 2017. "Nowcasting BRIC+M in real time," International Journal of Forecasting, Elsevier, vol. 33(4), pages 915-935.
  30. Döhrn, Roland & an de Meulen, Philipp & Barabas, György & Gebhardt, Heinz & Kitlinski, Tobias & Micheli, Martin & Schmidt, Torsten & Vosen, Simeon & Zimmermann, Lina, 2011. "Die wirtschaftliche Entwicklung im Inland: Zunehmende Risiken für die Konjunktur," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 62(2), pages 41-90.
  31. Konstantins Benkovskis, 2008. "Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators," Working Papers 2008/05, Latvijas Banka.
  32. Guido Bulligan & Massimiliano Marcellino & Fabrizio Venditti, 2012. "Forecasting economic activity with higher frequency targeted predictors," Temi di discussione (Economic working papers) 847, Bank of Italy, Economic Research and International Relations Area.
  33. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
  34. Cascaldi-Garcia, Danilo & Ferreira, Thiago R.T. & Giannone, Domenico & Modugno, Michele, 2024. "Back to the present: Learning about the euro area through a now-casting model," International Journal of Forecasting, Elsevier, vol. 40(2), pages 661-686.
  35. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
  36. William A. Barnett & Marcelle Chauvet & Danilo Leiva‐Leon & Liting Su, 2024. "The Credit‐Card‐Services Augmented Divisia Monetary Aggregates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1163-1202, August.
  37. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
  38. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
  39. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
  40. Dorinth van Dijk & Jasper de Winter, 2023. "Nowcasting GDP using tone-adjusted time varying news topics: Evidence from the financial press," Working Papers 766, DNB.
  41. Leiva-Leon Danilo, 2014. "Real vs. nominal cycles: a multistate Markov-switching bi-factor approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 557-580, December.
  42. George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
  43. repec:hal:journl:peer-00844811 is not listed on IDEAS
  44. repec:ebl:ecbull:v:3:y:2008:i:32:p:1-8 is not listed on IDEAS
  45. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
  46. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
  47. Elena Andreou & Patrick Gagliardini & Eric Ghysels & Mirco Rubin, 2016. "Is Industrial Production Still the Dominant Factor for the US Economy?," Swiss Finance Institute Research Paper Series 16-11, Swiss Finance Institute.
  48. Christian Glocker & Serguei Kaniovski, 2022. "Macroeconometric forecasting using a cluster of dynamic factor models," Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
  49. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
  50. Liebermann, Joelle, 2010. "Real-time nowcasting of GDP: Factor model versus professional forecasters," MPRA Paper 28819, University Library of Munich, Germany.
  51. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
  52. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
  53. Evren Erdogan Cosar & Sevim Kosem & Cagri Sarikaya, 2013. "Do We Really Need Filters In Estimating Output Gap? : Evidence From Turkey," Working Papers 1333, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  54. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
  55. Germán López, 2015. "Forecast Accuracy of Small and Large Scale Dynamic Factor Models in Developing Economies," Working Papers. Serie AD 2015-03, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  56. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  57. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
  58. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019. "Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland," International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
  59. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
  60. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
  61. Gabriele Fiorentini & Enrique Sentana, 2019. "Dynamic specification tests for dynamic factor models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 325-346, April.
  62. William A. Barnett & Marcelle Chauvet & Danilo Leiva-Leon & Liting Su, 2016. "Nowcasting Nominal GDP with the Credit-Card Augmented Divisia Monetary Aggregates," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201605, University of Kansas, Department of Economics, revised Aug 2016.
  63. Katja Heinisch & Rolf Scheufele, 2019. "Should Forecasters Use Real‐Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence," German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 170-200, November.
  64. Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
  65. Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
  66. Valentina Raponi & Cecilia Frale, 2014. "Revisions in official data and forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 451-472, August.
  67. Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta, 2010. "Nowcasting," Working Paper Series 1275, European Central Bank.
  68. Barnett, William & Chauvet, Marcelle & Leiva-Leon, Danilo & Su, Liting, 2016. "Nowcasting Nominal GDP with the Credit-Card Augmented Divisia Monetary," Studies in Applied Economics 59, The Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise.
  69. Camila Figueroa S. & Michael Pedersen, 2019. "Extracting information on economic activity from business and consumer surveys in an emerging economy (Chile)," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 22(3), pages 098-131, December.
  70. Brunetti, Celso & Harris, Jeffrey H. & Mankad, Shawn, 2023. "Networks, interconnectedness, and interbank information asymmetry," Journal of Financial Stability, Elsevier, vol. 67(C).
  71. Joan Paredes & Javier J. Pérez & Gabriel Perez Quiros, 2023. "Fiscal targets. A guide to forecasters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 472-492, June.
  72. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
  73. Alain Galli, 2018. "Which Indicators Matter? Analyzing the Swiss Business Cycle Using a Large-Scale Mixed-Frequency Dynamic Factor Model," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 179-218, November.
  74. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
  75. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
  76. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09hi4cii4bh is not listed on IDEAS
  77. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
  78. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
  79. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
  80. Smith Paul, 2016. "Nowcasting UK GDP during the depression," Working Papers 1606, University of Strathclyde Business School, Department of Economics.
  81. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
  82. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
  83. Juan G Brida & Bibiana Lanzilotta & Lucia I Rosich, 2021. "On the empirical relations between producers expectations and economic growth," Economics Bulletin, AccessEcon, vol. 41(3), pages 1970-1982.
  84. Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.
  85. Hopp Daniel, 2022. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Journal of Official Statistics, Sciendo, vol. 38(3), pages 847-873, September.
  86. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting industrial production: the role of information and methods," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The IFC's contribution to the 57th ISI Session, Durban, August 2009, volume 33, pages 227-235, Bank for International Settlements.
  87. Yang, Hu & Chen, Yu & Chen, Kedong & Wang, Haijun, 2024. "Temporal-spatial dependencies enhanced deep learning model for time series forecast," International Review of Financial Analysis, Elsevier, vol. 94(C).
  88. Maximo Camacho & Gabriel Perez-Quiros, 2009. "Ñ-STING: España Short Term INdicator of Growth," Working Papers 0912, Banco de España.
  89. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
  90. Olivier Darne, 2008. "Using business survey in industrial and services sector to nowcast GDP growth:The French case," Economics Bulletin, AccessEcon, vol. 3(32), pages 1-8.
  91. Yan Shao & Zhe Yang & Tianjian Yang, 2023. "The Road of Post-Industrialization Transformation in Developing Countries Based on Weighted Markov and Grey Correlation Theory, Taking the Change of Industrial Structure in Heilongjiang Province of Ch," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
  92. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
  93. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
  94. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
  95. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
  96. Hauber, Philipp, 2022. "Real-time nowcasting with sparse factor models," EconStor Preprints 251551, ZBW - Leibniz Information Centre for Economics.
  97. Pérez-Quirós, Gabriel & Camacho, Máximo & Alvarez, Rocio, 2012. "Finite sample performance of small versus large scale dynamic factor models," CEPR Discussion Papers 8867, C.E.P.R. Discussion Papers.
  98. Kurz-Kim, Jeong-Ryeol, 2018. "A note on the predictive power of survey data in nowcasting euro area GDP," Discussion Papers 10/2018, Deutsche Bundesbank.
  99. Soybilgen, Baris, 2018. "Identifying US business cycle regimes using dynamic factors and neural network models," MPRA Paper 94715, University Library of Munich, Germany.
  100. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
  101. Martin Solberger & Erik Spånberg, 2020. "Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 875-900, March.
  102. Daniel Roash & Tanya Suhoy, 2019. "Sentiment Indicators Based on a Short Business Tendency Survey," Bank of Israel Working Papers 2019.11, Bank of Israel.
  103. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.
  104. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
  105. Liudmila Kitrar & Tamara Lipkind, 2021. "Assessment Of GDP Growth After The Corona Crisis Using The Results Of Business And Consumer Surveys," HSE Working papers WP BRP 118/STI/2021, National Research University Higher School of Economics.
  106. Christiana Anaxagorou & Nicoletta Pashourtidou, 2022. "Forecasting economic activity using preselected predictors: the case of Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 16(1), pages 11-36, June.
  107. Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  108. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
  109. Lenza Michele & Warmedinger Thomas, 2011. "A Factor Model for Euro-area Short-term Inflation Analysis," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 50-62, February.
  110. Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
  111. Pirschel, Inske, 2015. "Forecasting Euro Area Recessions in real-time with a mixed-frequency Bayesian VAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113031, Verein für Socialpolitik / German Economic Association.
  112. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
  113. Barhoumi, K. & Brunhes-Lesage, V. & Ferrara, L. & Pluyaud, B. & Rouvreau, B. & Darné, O., 2008. "OPTIM: a quarterly forecasting tool for French GDP," Quarterly selection of articles - Bulletin de la Banque de France, Banque de France, issue 13, pages 31-47, Autumn.
  114. António Rua & Nuno Lourenço & Francisco Dias, 2018. "Forecasting exports with targeted predictors," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
  115. Wegmüller, Philipp & Glocker, Christian & Guggia, Valentino, 2023. "Weekly economic activity: Measurement and informational content," International Journal of Forecasting, Elsevier, vol. 39(1), pages 228-243.
  116. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09hi4cii4bh is not listed on IDEAS
  117. Keeney, Mary & Kennedy, Bernard & Liebermann, Joelle, 2012. "The value of hard and soft data for short-term forecasting of GDP," Economic Letters 11/EL/12, Central Bank of Ireland.
  118. Giannone, Domenico & Reichlin, Lucrezia & Simonelli, Saverio, 2009. "Nowcasting Euro Area Economic Activity in Real Time: The Role of Confidence Indicators," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210, pages 90-97, October.
  119. Urasawa, Satoshi, 2014. "Real-time GDP forecasting for Japan: A dynamic factor model approach," Journal of the Japanese and International Economies, Elsevier, vol. 34(C), pages 116-134.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.