IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v35y2004i2p399-424.html
   My bibliography  Save this item

Fuzzy logic in insurance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lai, Li-Hua, 2008. "An evaluation of fuzzy transportation underwriting systematic risk," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1231-1237, November.
  2. Pablo J. Villacorta & Laura González-Vila Puchades & Jorge de Andrés-Sánchez, 2021. "Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
  3. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
  4. Shapiro, Arnold F., 2009. "Fuzzy random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 307-314, April.
  5. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
  6. Kemaloglu, Sibel Acik & Shapiro, Arnold F. & Tank, Fatih & Apaydin, Aysen, 2018. "Using fuzzy logic to interpret dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 101-106.
  7. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
  8. Li-Hua Lai, 2006. "Underwriting profit margin of P/L insurance in the fuzzy-ICAPM," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(1), pages 23-34, July.
  9. Rachida Hennani & Michel Terraza, 2012. "Value-at-Risk stressée chaotique d’un portefeuille bancaire," Working Papers 12-23, LAMETA, Universtiy of Montpellier, revised Sep 2012.
  10. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
  11. Apaydin, Aysen & Baser, Furkan, 2010. "Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 113-122, October.
  12. Liu, Ying & Li, Xiaozhong & Liu, Yinli, 2015. "The bounds of premium and optimality of stop loss insurance under uncertain random environments," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 273-278.
  13. Daniela Ungureanu & Raluca Vernic, 2015. "On a fuzzy cash flow model with insurance applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 39-54, April.
  14. Luukka, Pasi & Collan, Mikael, 2015. "New fuzzy insurance pricing method for giga-investment project insurance," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 22-29.
  15. Shapiro, Arnold F. & Koissi, Marie-Claire, 2017. "Fuzzy logic modifications of the Analytic Hierarchy Process," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 189-202.
  16. Yao, Kai & Qin, Zhongfeng, 2015. "A modified insurance risk process with uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 227-233.
  17. Demirel, Duygun Fatih & Basak, Melek, 2019. "A fuzzy bi-level method for modeling age-specific migration," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
  18. Sadefo Kamdem, J. & Mbairadjim Moussa, A. & Terraza, M., 2012. "Fuzzy risk adjusted performance measures: Application to hedge funds," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 702-712.
  19. Berry-Stölzle, Thomas R. & Koissi, Marie-Claire & Shapiro, Arnold F., 2010. "Detecting fuzzy relationships in regression models: The case of insurer solvency surveillance in Germany," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 554-567, June.
  20. Dalkilic, Turkan Erbay & Tank, Fatih & Kula, Kamile Sanli, 2009. "Neural networks approach for determining total claim amounts in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 236-241, October.
  21. Tank, Fatih & Gebizlioglu, Omer L. & Apaydin, Aysen, 2006. "Determination of dependency parameter in joint distribution of dependent risks by fuzzy approach," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 189-194, February.
  22. Jorge De Andrés-Sánchez, 2024. "Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method," Mathematics, MDPI, vol. 12(6), pages 1-24, March.
  23. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
  24. Biener, Christian, 2013. "Pricing in Microinsurance Markets," World Development, Elsevier, vol. 41(C), pages 132-144.
  25. Marc Sanchez-Roger & María Dolores Oliver-Alfonso & Carlos Sanchís-Pedregosa, 2019. "Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises," Mathematics, MDPI, vol. 7(11), pages 1-22, November.
  26. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
  27. de Andrés-Sánchez, Jorge & González-Vila Puchades, Laura, 2017. "The valuation of life contingencies: A symmetrical triangular fuzzy approximation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 83-94.
  28. Catalina Lozano-Murcia & Francisco P. Romero & Jesus Serrano-Guerrero & Jose A. Olivas, 2023. "A Comparison between Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial Context," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
  29. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 2017. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 18(2), pages 131-147, June.
  30. Juana Rivera-Lirio & María Muñoz-Torres, 2010. "The Effectiveness of the Public Support Policies for the European Industry Financing as a Contribution to Sustainable Development," Journal of Business Ethics, Springer, vol. 94(4), pages 489-515, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.