IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p347-d496604.html
   My bibliography  Save this article

Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance

Author

Listed:
  • Pablo J. Villacorta

    (Department of Computer Science and Artificial Intelligence, Higher Technical School of Computer and Telecommunication Engineering, University of Granada, Cuesta del Hospicio s/n, 18071 Granada, Spain)

  • Laura González-Vila Puchades

    (Department of Mathematics for Economics, Finance and Actuarial Science, Faculty of Economics and Business, University of Barcelona, Avinguda Diagonal 690, 08034 Barcelona, Spain)

  • Jorge de Andrés-Sánchez

    (Social and Business Research Laboratory, Campus Bellisens, Rovira i Virgili University, Avinguda de la Universitat 1, 43204 Reus, Spain)

Abstract

Markov chains (MCs) are widely used to model a great deal of financial and actuarial problems. Likewise, they are also used in many other fields ranging from economics, management, agricultural sciences, engineering or informatics to medicine. This paper focuses on the use of MCs for the design of non-life bonus-malus systems (BMSs). It proposes quantifying the uncertainty of transition probabilities in BMSs by using fuzzy numbers (FNs). To do so, Fuzzy MCs (FMCs) as defined by Buckley and Eslami in 2002 are used, thus giving rise to the concept of Fuzzy BMSs (FBMSs). More concretely, we describe in detail the common BMS where the number of claims follows a Poisson distribution under the hypothesis that its characteristic parameter is not a real but a triangular FN (TFN). Moreover, we reflect on how to fit that parameter by using several fuzzy data analysis tools and discuss the goodness of triangular approximates to fuzzy transition probabilities, the fuzzy stationary state, and the fuzzy mean asymptotic premium. The use of FMCs in a BMS allows obtaining not only point estimates of all these variables, but also a structured set of their possible values whose reliability is given by means of a possibility measure. Although our analysis is circumscribed to non-life insurance, all of its findings can easily be extended to any of the abovementioned fields with slight modifications.

Suggested Citation

  • Pablo J. Villacorta & Laura González-Vila Puchades & Jorge de Andrés-Sánchez, 2021. "Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:347-:d:496604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apaydin, Aysen & Baser, Furkan, 2010. "Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 113-122, October.
    2. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
    3. Villacorta, Pablo J. & Verdegay, José L., 2016. "FuzzyStatProb: An R Package for the Estimation of Fuzzy Stationary Probabilities from a Sequence of Observations of an Unknown Markov Chain," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i08).
    4. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Economic Modelling, Elsevier, vol. 39(C), pages 247-256.
    5. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    6. De Pril, Nelson, 1978. "The Efficiency of a Bonus-Malus System," ASTIN Bulletin, Cambridge University Press, vol. 10(1), pages 59-72, May.
    7. Huang, Tao & Zhao, Ruiqing & Tang, Wansheng, 2009. "Risk model with fuzzy random individual claim amount," European Journal of Operational Research, Elsevier, vol. 192(3), pages 879-890, February.
    8. Bonsdorff, Heikki, 1992. "On the Convergence Rate of Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 22(2), pages 217-223, November.
    9. Kemaloglu, Sibel Acik & Shapiro, Arnold F. & Tank, Fatih & Apaydin, Aysen, 2018. "Using fuzzy logic to interpret dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 101-106.
    10. Shapiro, Arnold F., 2013. "Modeling future lifetime as a fuzzy random variable," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 864-870.
    11. Niemiec, Małgorzata, 2007. "Bonus-malus Systems as Markov Set-chains," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 53-65, May.
    12. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    13. Loimaranta, K., 1972. "Some asymptotic properties of bonus systems," ASTIN Bulletin, Cambridge University Press, vol. 6(3), pages 233-245, May.
    14. Lemaire, Jean & Zi, Hongmin, 1994. "A Comparative Analysis of 30 Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 287-309, November.
    15. A. Heras & J.L. Vilar & J.A. Gil, 2002. "Asymptotic Fairness of Bonus-Malus Systems and Optimal Scales of Premiums," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 27(1), pages 61-82, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Andrés-Sánchez, Jorge & González-Vila Puchades, Laura, 2017. "The valuation of life contingencies: A symmetrical triangular fuzzy approximation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 83-94.
    2. Søren Asmussen, 2014. "Modeling and Performance of Bonus-Malus Systems: Stationarity versus Age-Correction," Risks, MDPI, vol. 2(1), pages 1-25, March.
    3. Yao, Kai & Qin, Zhongfeng, 2015. "A modified insurance risk process with uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 227-233.
    4. Jorge De Andrés-Sánchez, 2024. "Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method," Mathematics, MDPI, vol. 12(6), pages 1-24, March.
    5. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    6. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
    7. Marcin Topolewski & Michał Bernardelli, 2015. "Optimisation of transition rules of bonus-malus system with Q-optimal premiums," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 37, pages 229-252.
    8. Daniela Ungureanu & Raluca Vernic, 2015. "On a fuzzy cash flow model with insurance applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 39-54, April.
    9. Luukka, Pasi & Collan, Mikael, 2015. "New fuzzy insurance pricing method for giga-investment project insurance," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 22-29.
    10. Anna Szymańska, 2015. "Impact of the number of classes and transition rules of bonus-malus system on its efficiency in tariff setting," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 37, pages 253-268.
    11. Demirel, Duygun Fatih & Basak, Melek, 2019. "A fuzzy bi-level method for modeling age-specific migration," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    12. Sadefo Kamdem, J. & Mbairadjim Moussa, A. & Terraza, M., 2012. "Fuzzy risk adjusted performance measures: Application to hedge funds," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 702-712.
    13. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
    14. Rachida Hennani & Michel Terraza, 2012. "Value-at-Risk stressée chaotique d’un portefeuille bancaire," Working Papers 12-23, LAMETA, Universtiy of Montpellier, revised Sep 2012.
    15. Kemaloglu, Sibel Acik & Shapiro, Arnold F. & Tank, Fatih & Apaydin, Aysen, 2018. "Using fuzzy logic to interpret dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 101-106.
    16. Martinek, László & Arató, N. Miklós, 2019. "An approach to merit rating by means of autoregressive sequences," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 205-217.
    17. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    18. Evangelos Vasileiou, 2022. "Inaccurate Value at Risk Estimations: Bad Modeling or Inappropriate Data?," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1155-1171, March.
    19. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    20. Jaworski, Piotr & Liberadzki, Kamil & Liberadzki, Marcin, 2017. "How does issuing contingent convertible bonds improve bank's solvency? A Value-at-Risk and Expected Shortfall approach," Economic Modelling, Elsevier, vol. 60(C), pages 162-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:347-:d:496604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.