IDEAS home Printed from https://ideas.repec.org/r/eee/ijocip/v25y2019icp62-83.html
   My bibliography  Save this item

A framework for modeling and assessing system resilience using a Bayesian network: A case study of an interdependent electrical infrastructure system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. da Silva, Fellipe Sartori & Matelli, José Alexandre, 2021. "Resilience in cogeneration systems: Metrics for evaluation and influence of design aspects," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  2. Xiansheng Chen & Ruisong Quan, 2021. "A spatiotemporal analysis of urban resilience to the COVID-19 pandemic in the Yangtze River Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 829-854, March.
  3. Guiyuan Li & Guo Cheng & Zhenying Wu & Xiaoxiao Liu, 2022. "Coupling Coordination Research on Disaster-Adapted Resilience of Modern Infrastructure System in the Middle and Lower Section of the Three Gorges Reservoir Area," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
  4. Ivo Häring & Mirjam Fehling-Kaschek & Natalie Miller & Katja Faist & Sebastian Ganter & Kushal Srivastava & Aishvarya Kumar Jain & Georg Fischer & Kai Fischer & Jörg Finger & Alexander Stolz & Tobias , 2021. "A performance-based tabular approach for joint systematic improvement of risk control and resilience applied to telecommunication grid, gas network, and ultrasound localization system," Environment Systems and Decisions, Springer, vol. 41(2), pages 286-329, June.
  5. Niamat Ullah Ibne Hossain & Farjana Nur & Raed Jaradat & Seyedmohsen Hosseini & Mohammad Marufuzzaman & Stephen M. Puryear & Randy K. Buchanan, 2019. "Metrics for Assessing Overall Performance of Inland Waterway Ports: A Bayesian Network Based Approach," Complexity, Hindawi, vol. 2019, pages 1-17, May.
  6. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
  7. Lutfu Saribulut & Gorkem Ok & Arman Ameen, 2023. "A Case Study on National Electricity Blackout of Turkey," Energies, MDPI, vol. 16(11), pages 1-20, May.
  8. Ghazy, Shams & Tang, Yu Hoe & Mugumya, Kevin Luwemba & Wong, Jing Ying & Chan, Andy, 2022. "Future-proofing Klang Valley’s veins with REBET: A framework for directing transportation technologies towards infrastructure resilience," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
  9. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
  10. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  11. T. Sivageerthi & Bathrinath Sankaranarayanan & Syed Mithun Ali & Ali AlArjani & Koppiahraj Karuppiah, 2022. "Modeling Challenges for Improving the Heat Rate Performance in a Thermal Power Plant: Implications for SDGs in Energy Supply Chains," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
  12. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  13. Pawel Gromek & Grzegorz Sobolewski, 2020. "Risk-Based Approach for Informing Sustainable Infrastructure Resilience Enhancement and Potential Resilience Implication in Terms of Emergency Service Perspective," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
  14. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
  15. Tianci Jiao & Hao Yuan & Jing Wang & Jun Ma & Xiaoling Li & Aimin Luo, 2024. "System-of-Systems Resilience Analysis and Design Using Bayesian and Dynamic Bayesian Networks," Mathematics, MDPI, vol. 12(16), pages 1-22, August.
  16. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
  17. Aalirezaei, Armin & Kabir, Dr. Golam & Khan, Md Saiful Arif, 2023. "Dynamic predictive analysis of the consequences of gas pipeline failures using a Bayesian network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
  18. Liu, Jin & Zhai, Changhai & Yu, Peng, 2022. "A Probabilistic Framework to Evaluate Seismic Resilience of Hospital Buildings Using Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  19. Haghshenas, Morteza & Hooshmand, Rahmat-Allah & Gholipour, Mehdi, 2024. "A novel cost-based optimization model for electric power distribution systems resilience improvement under dust storms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
  20. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
  21. Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
  22. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
  23. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
  24. Sakib, Nazmus & Ibne Hossain, Niamat Ullah & Nur, Farjana & Talluri, Srinivas & Jaradat, Raed & Lawrence, Jeanne Marie, 2021. "An assessment of probabilistic disaster in the oil and gas supply chain leveraging Bayesian belief network," International Journal of Production Economics, Elsevier, vol. 235(C).
  25. Wang, Shuliang & Gu, Xifeng & Luan, Shengyang & Zhao, Mingwei, 2021. "Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
  26. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.