IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v98y2016icp253-270.html
   My bibliography  Save this item

The implications of heat electrification on national electrical supply-demand balance under published 2050 energy scenarios

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
  2. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
  3. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
  4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  5. Wang, Yuhao & Qu, Ke & Chen, Xiangjie & Zhang, Xingxing & Riffat, Saffa, 2022. "Holistic electrification vs deep energy retrofits for optimal decarbonisation pathways of UK dwellings: A case study of the 1940s’ British post-war masonry house," Energy, Elsevier, vol. 241(C).
  6. Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
  7. Jiang Zhu & Zhenyu Zhao, 2017. "Chinese Electric Power Development Coordination Analysis on Resource, Production and Consumption: A Provincial Case Study," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
  8. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
  9. Wei, Sun & Yanfeng, Xu, 2017. "Research on China's energy supply and demand using an improved Grey-Markov chain model based on wavelet transform," Energy, Elsevier, vol. 118(C), pages 969-984.
  10. Jean-Nicolas Louis & Stéphane Allard & Freideriki Kotrotsou & Vincent Debusschere, 2020. "A multi-objective approach to the prospective development of the European power system by 2050," Post-Print hal-02376337, HAL.
  11. Haghi, Ehsan & Qadrdan, Meysam & Wu, Jianzhong & Jenkins, Nick & Fowler, Michael & Raahemifar, Kaamran, 2020. "An iterative approach for optimal decarbonization of electricity and heat supply systems in the Great Britain," Energy, Elsevier, vol. 201(C).
  12. Gauthier de Maere d’Aertrycke & Yves Smeers & Hugues de Peufeilhoux & Pierre-Laurent Lucille, 2020. "The Role of Electrification in the Decarbonization of Central-Western Europe," Energies, MDPI, vol. 13(18), pages 1-20, September.
  13. Lee, Zachary E. & Max Zhang, K., 2022. "Unintended consequences of smart thermostats in the transition to electrified heating," Applied Energy, Elsevier, vol. 322(C).
  14. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
  15. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  16. McCallum, Peter & Jenkins, David P. & Peacock, Andrew D. & Patidar, Sandhya & Andoni, Merlinda & Flynn, David & Robu, Valentin, 2019. "A multi-sectoral approach to modelling community energy demand of the built environment," Energy Policy, Elsevier, vol. 132(C), pages 865-875.
  17. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
  18. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
  19. Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.
  20. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
  21. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2019. "Multi-temporal assessment of power system flexibility requirement," Applied Energy, Elsevier, vol. 238(C), pages 1327-1336.
  22. Louis, Jean-Nicolas & Allard, Stéphane & Kotrotsou, Freideriki & Debusschere, Vincent, 2020. "A multi-objective approach to the prospective development of the European power system by 2050," Energy, Elsevier, vol. 191(C).
  23. Gong, Xuan & De Paola, Antonio & Angeli, David & Strbac, Goran, 2019. "A game-theoretic approach for price-based coordination of flexible devices operating in integrated energy-reserve markets," Energy, Elsevier, vol. 189(C).
  24. Halilovic, Smajil & Odersky, Leonhard & Hamacher, Thomas, 2022. "Integration of groundwater heat pumps into energy system optimization models," Energy, Elsevier, vol. 238(PA).
  25. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
  26. Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Markides, Christos N. & Strbac, Goran, 2023. "System-driven design and integration of low-carbon domestic heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.