My bibliography
Save this item
A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hassan, Muhammed A. & Al-Ghussain, Loiy & Khalil, Adel & Kaseb, Sayed A., 2022. "Self-calibrated hybrid weather forecasters for solar thermal and photovoltaic power plants," Renewable Energy, Elsevier, vol. 188(C), pages 1120-1140.
- Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
- Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
- Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
- Fei Mei & Yi Pan & Kedong Zhu & Jianyong Zheng, 2018. "A Hybrid Online Forecasting Model for Ultrashort-Term Photovoltaic Power Generation," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
- Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
- Mashud Rana & Irena Koprinska, 2016. "Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power," Energies, MDPI, vol. 9(10), pages 1-17, October.
- Martins, Guilherme Santos & Giesbrecht, Mateus, 2023. "Hybrid approaches based on Singular Spectrum Analysis and k- Nearest Neighbors for clearness index forecasting," Renewable Energy, Elsevier, vol. 219(P1).
- Gao, Bixuan & Huang, Xiaoqiao & Shi, Junsheng & Tai, Yonghang & Zhang, Jun, 2020. "Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 1665-1683.
- Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
- Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
- Kaur, Amanpreet & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Net load forecasting for high renewable energy penetration grids," Energy, Elsevier, vol. 114(C), pages 1073-1084.
- Peng, Cheng & Chen, Heng & Lin, Chaoran & Guo, Shuang & Yang, Zhi & Chen, Ke, 2021. "A framework for evaluating energy security in China: Empirical analysis of forecasting and assessment based on energy consumption," Energy, Elsevier, vol. 234(C).
- Bisoi, Ranjeeta & Dash, Deepak Ranjan & Dash, P.K. & Tripathy, Lokanath, 2022. "An efficient robust optimized functional link broad learning system for solar irradiance prediction," Applied Energy, Elsevier, vol. 319(C).
- Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
- Edna S. Solano & Payman Dehghanian & Carolina M. Affonso, 2022. "Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection," Energies, MDPI, vol. 15(19), pages 1-18, September.
- Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
- Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Prediction of monthly average global solar radiation based on statistical distribution of clearness index," Energy, Elsevier, vol. 90(P2), pages 1733-1742.
- Dongkyu Lee & Jinhwa Jeong & Sung Hoon Yoon & Young Tae Chae, 2019. "Improvement of Short-Term BIPV Power Predictions Using Feature Engineering and a Recurrent Neural Network," Energies, MDPI, vol. 12(17), pages 1-17, August.
- Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
- Karakurt, Izzet, 2021. "Modelling and forecasting the oil consumptions of the BRICS-T countries," Energy, Elsevier, vol. 220(C).
- Peng Lu & Lin Ye & Bohao Sun & Cihang Zhang & Yongning Zhao & Jingzhu Teng, 2018. "A New Hybrid Prediction Method of Ultra-Short-Term Wind Power Forecasting Based on EEMD-PE and LSSVM Optimized by the GSA," Energies, MDPI, vol. 11(4), pages 1-23, March.
- Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
- Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.
- Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
- Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
- N. Yogambal Jayalakshmi & R. Shankar & Umashankar Subramaniam & I. Baranilingesan & Alagar Karthick & Balasubramaniam Stalin & Robbi Rahim & Aritra Ghosh, 2021. "Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting," Energies, MDPI, vol. 14(9), pages 1-23, April.
- Carneiro, Tatiane C. & Rocha, Paulo A.C. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M., 2022. "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, Elsevier, vol. 314(C).