IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v69y2014icp749-759.html
   My bibliography  Save this item

An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
  2. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
  3. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
  4. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
  5. Y.H. Teoh & K.H. Yu & H.G. How & H.-T. Nguyen, 2019. "Experimental Investigation of Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled with Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends," Energies, MDPI, vol. 12(10), pages 1-17, May.
  6. Mulkan, Andi & Mohd Zulkifli, Nurin Wahidah & Husin, Husni & Ahmadi, & Dahlan, Irvan, 2024. "Performance and emissions assessment under full load operation of an unmodified diesel engine running on biodiesel-based waste cooking oil synthesized using JPW solid catalyst," Renewable Energy, Elsevier, vol. 224(C).
  7. Mathimani, Thangavel & Senthil Kumar, Tamilkolundu & Chandrasekar, Murugesan & Uma, Lakshmanan & Prabaharan, Dharmar, 2017. "Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel," Renewable Energy, Elsevier, vol. 105(C), pages 637-646.
  8. Norwazan Abdul Rahim & Mohammad Nazri Mohd Jaafar & Syazwana Sapee & Hazir Farouk Elraheem, 2016. "Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner," Energies, MDPI, vol. 9(8), pages 1-18, August.
  9. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
  10. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.
  11. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2016. "Analysis of combustion phenomena and pollutant formation in a small compression ignition engine fuelled with blended and pure rapeseed methyl ester," Energy, Elsevier, vol. 106(C), pages 618-630.
  12. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2015. "Effects of both blended and pure biodiesel on waste heat recovery potentiality and exhaust emissions of a small CI (compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 661-671.
  13. How, H.G. & Teoh, Y.H. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Chuah, H.G. & Alabdulkarem, A., 2019. "Impact of two-stage injection fuel quantity on engine-out responses of a common-rail diesel engine fueled with coconut oil methyl esters-diesel fuel blends," Renewable Energy, Elsevier, vol. 139(C), pages 515-529.
  14. Ruhul, A.M. & Kalam, M.A. & Masjuki, H.H. & Shahir, S.A. & Alabdulkarem, Abdullah & Teoh, Y.H. & How, H.G. & Reham, S.S., 2017. "Evaluating combustion, performance and emission characteristics of Millettia pinnata and Croton megalocarpus biodiesel blends in a diesel engine," Energy, Elsevier, vol. 141(C), pages 2362-2376.
  15. Yin, Xiaojun & Yue, Guangzhao & Liu, Junlong & Duan, Hao & Duan, Qimeng & Kou, Hailiang & Wang, Ying & Yang, Bo & Zeng, Ke, 2023. "Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel," Energy, Elsevier, vol. 267(C).
  16. Nautiyal, Piyushi & Subramanian, K.A. & Dastidar, M.G. & Kumar, Ashok, 2020. "Experimental assessment of performance, combustion and emissions of a compression ignition engine fuelled with Spirulina platensis biodiesel," Energy, Elsevier, vol. 193(C).
  17. Flavio Caresana & Marco Bietresato & Massimiliano Renzi, 2021. "Injection and Combustion Analysis of Pure Rapeseed Oil Methyl Ester (RME) in a Pump-Line-Nozzle Fuel Injection System," Energies, MDPI, vol. 14(22), pages 1-25, November.
  18. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  19. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
  20. Hao Chen & Chenxi Wang & Xiang Li & Yongzhi Li & Miao Zhang & Zhijun Peng & Yiqiang Pei & Zhihao Ma & Xuewen Zhang & Peiyong Ni & Rohitha Weerasinghe & Raouf Mobasheri, 2023. "Quantitative Analysis of Water Injection Mass and Timing Effects on Oxy-Fuel Combustion Characteristics in a GDI Engine Fuelled with E10," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
  21. Ong, Zhi Chao & Mohd Mishani, Mohd Bakar & Chong, Wen Tong & Soon, Roon Sheng & Ong, Hwai Chyuan & Ismail, Zubaidah, 2017. "Identification of optimum Calophyllum inophyllum bio-fuel blend in diesel engine using advanced vibration analysis technique," Renewable Energy, Elsevier, vol. 109(C), pages 295-304.
  22. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
  23. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
  24. Monirul, I.M. & Kalam, M.A. & Masjuki, H.H. & Zulkifli, N.W.M. & Shahir, S.A. & Mosarof, M.H. & Ruhul, A.M., 2017. "Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions," Renewable Energy, Elsevier, vol. 101(C), pages 702-712.
  25. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
  26. Alptekin, Ertan, 2017. "Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine," Energy, Elsevier, vol. 119(C), pages 44-52.
  27. Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.
  28. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.