My bibliography
Save this item
The importance of flexible power plant operation for Jiangsu's wind integration
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Zethraeus, Björn, 2014. "Towards a flexible energy system – A case study for Inland Norway," Applied Energy, Elsevier, vol. 130(C), pages 41-50.
- Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- George Xydis, 2015. "Wind Energy Integration through District Heating. A Wind Resource Based Approach," Resources, MDPI, vol. 4(1), pages 1-18, March.
- Higgins, P. & Foley, A.M. & Douglas, R. & Li, K., 2014. "Impact of offshore wind power forecast error in a carbon constraint electricity market," Energy, Elsevier, vol. 76(C), pages 187-197.
- Yeh, Chung-Yu & De Swart, J.K. & Mahmoudi, Amirhoushang & Singh, Abhishek K. & Brem, Gerrit & Shahi, Mina, 2024. "Simulation-based analysis of thermochemical heat storage feasibility in third-generation district heating systems: Case study of Enschede, Netherlands," Renewable Energy, Elsevier, vol. 221(C).
- Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
- Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
- Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
- Kubik, M.L. & Coker, P.J. & Barlow, J.F., 2015. "Increasing thermal plant flexibility in a high renewables power system," Applied Energy, Elsevier, vol. 154(C), pages 102-111.
- Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
- Chyong, Chi Kong & Newbery, David, 2022.
"A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage,"
Energy Policy, Elsevier, vol. 170(C).
- Chyong, C-K. & Newbery, D. & McCarty, T., 2019. "A Unit Commitment and Economic Dispatch Model of the GB Electricity Market – Formulation and Application to Hydro Pumped Storage," Cambridge Working Papers in Economics 1968, Faculty of Economics, University of Cambridge.
- Chi Kong Chyong & David Newbery & Thomas McCarty, 2019. "A Unit Commitment and Economic Dispatch Model of the GB Electricity Market – Formulation and Application to Hydro Pumped Storage," Working Papers EPRG1924, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Duquette, Jean & Wild, Peter & Rowe, Andrew, 2014. "The potential benefits of widespread combined heat and power based district energy networks in the province of Ontario," Energy, Elsevier, vol. 67(C), pages 41-51.
- Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
- Deng, Xu & Lv, Tao & Hou, Xiaoran & Xu, Jie & Pi, Duyang & Liu, Feng & Li, Na, 2022. "Regional disparity of flexibility options for integrating variable renewable energy," Renewable Energy, Elsevier, vol. 192(C), pages 641-654.
- Feng, Yi & Lin, Heyun & Ho, S.L. & Yan, Jianhu & Dong, Jianning & Fang, Shuhua & Huang, Yunkai, 2015. "Overview of wind power generation in China: Status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 847-858.
- Szarka, Nora & Scholwin, Frank & Trommler, Marcus & Fabian Jacobi, H. & Eichhorn, Marcus & Ortwein, Andreas & Thrän, Daniela, 2013. "A novel role for bioenergy: A flexible, demand-oriented power supply," Energy, Elsevier, vol. 61(C), pages 18-26.
- Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
- Batas Bjelić, Ilija & Rajaković, Nikola & Ćosić, Boris & Duić, Neven, 2013. "Increasing wind power penetration into the existing Serbian energy system," Energy, Elsevier, vol. 57(C), pages 30-37.
- Lund, Rasmus & Mathiesen, Brian Vad, 2015. "Large combined heat and power plants in sustainable energy systems," Applied Energy, Elsevier, vol. 142(C), pages 389-395.
- Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
- Çam, Eren, 2020. "Optimal Dispatch of a Coal-Fired Power Plant with Integrated Thermal Energy Storage," EWI Working Papers 2020-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
- Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
- Hong, Lixuan & Lund, Henrik & Mathiesen, Brian Vad & Möller, Bernd, 2013. "2050 pathway to an active renewable energy scenario for Jiangsu province," Energy Policy, Elsevier, vol. 53(C), pages 267-278.
- Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
- Pukšec, Tomislav & Mathiesen, Brian Vad & Novosel, Tomislav & Duić, Neven, 2014. "Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia," Energy, Elsevier, vol. 76(C), pages 198-209.
- Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
- Saleh Abujarad & Mohd Wazir Mustafa & Jasrul Jamani Jamian & Abdirahman M. Abdilahi & Jeroen D. M. De Kooning & Jan Desmet & Lieven Vandevelde, 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems," Energies, MDPI, vol. 13(21), pages 1-19, October.
- Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
- Jose R. Vargas-Jaramillo & Jhon A. Montanez-Barrera & Michael R. von Spakovsky & Lamine Mili & Sergio Cano-Andrade, 2019. "Effects of Producer and Transmission Reliability on the Sustainability Assessment of Power System Networks," Energies, MDPI, vol. 12(3), pages 1-21, February.
- Edmunds, R.K. & Cockerill, T.T. & Foxon, T.J. & Ingham, D.B. & Pourkashanian, M., 2014. "Technical benefits of energy storage and electricity interconnections in future British power systems," Energy, Elsevier, vol. 70(C), pages 577-587.
- Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.