IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v32y2007i4p406-417.html
   My bibliography  Save this item

Modeling and control of a SOFC-GT-based autonomous power system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Liu, He & Zhang, Silong & Dong, Peng, 2019. "Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell," Energy, Elsevier, vol. 168(C), pages 702-711.
  2. Hajimolana, S. Ahmad & Hussain, M. Azlan & Daud, W.M. Ashri Wan & Soroush, M. & Shamiri, A., 2011. "Mathematical modeling of solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1893-1917, May.
  3. Jiang, Jianhua & Shen, Tan & Deng, Zhonghua & Fu, Xiaowei & Li, Jian & Li, Xi, 2018. "High efficiency thermoelectric cooperative control of a stand-alone solid oxide fuel cell system with an air bypass valve," Energy, Elsevier, vol. 152(C), pages 13-26.
  4. Obara, Shin’ya, 2015. "Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics," Applied Energy, Elsevier, vol. 141(C), pages 19-31.
  5. Eichhorn Colombo, Konrad W. & Kharton, Vladislav V. & Berto, Filippo & Paltrinieri, Nicola, 2020. "Mathematical modeling and simulation of hydrogen-fueled solid oxide fuel cell system for micro-grid applications - Effect of failure and degradation on transient performance," Energy, Elsevier, vol. 202(C).
  6. Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
  7. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
  8. Slippey, Andrew & Madani, Omid & Nishtala, Kalyan & Das, Tuhin, 2015. "Invariant properties of solid oxide fuel cell systems with integrated reformers," Energy, Elsevier, vol. 90(P1), pages 452-463.
  9. Safari, Amin & Shahsavari, Hossein & Salehi, Javad, 2018. "A mathematical model of SOFC power plant for dynamic simulation of multi-machine power systems," Energy, Elsevier, vol. 149(C), pages 397-413.
  10. Juanjo Ugartemendia & J. Xabier Ostolaza & Itziar Zubia, 2013. "Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST) Plant," Energies, MDPI, vol. 6(10), pages 1-23, September.
  11. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
  12. Anastassios Stamatis & Christina Vinni & Diamantis Bakalis & Fotini Tzorbatzoglou & Panagiotis Tsiakaras, 2012. "Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol," Energies, MDPI, vol. 5(11), pages 1-20, October.
  13. Obara, Shin'ya, 2022. "Resilience of the microgrid with a core substation with 100% hydrogen fuel cell combined cycle and a general substation with variable renewable energy," Applied Energy, Elsevier, vol. 327(C).
  14. Chakraborty, Uday Kumar, 2009. "Static and dynamic modeling of solid oxide fuel cell using genetic programming," Energy, Elsevier, vol. 34(6), pages 740-751.
  15. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
  16. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
  17. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
  18. Ferrari, M.L. & Pascenti, M. & Massardo, A.F., 2018. "Validated ejector model for hybrid system applications," Energy, Elsevier, vol. 162(C), pages 1106-1114.
  19. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
  20. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
  21. Nahar, Gaurav & Mote, Dhananjay & Dupont, Valerie, 2017. "Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1032-1052.
  22. Traverso, A. & Magistri, L. & Massardo, A.F., 2010. "Turbomachinery for the air management and energy recovery in fuel cell gas turbine hybrid systems," Energy, Elsevier, vol. 35(2), pages 764-777.
  23. Steilen, Mike & Saletti, Costanza & Heddrich, Marc P. & Friedrich, K. Andreas, 2018. "Analysis of the influence of heat transfer on the stationary operation and performance of a solid oxide fuel cell/gas turbine hybrid power plant," Applied Energy, Elsevier, vol. 211(C), pages 479-491.
  24. Oleksandr Cherednichenko & Valerii Havrysh & Vyacheslav Shebanin & Antonina Kalinichenko & Grzegorz Mentel & Joanna Nakonieczny, 2020. "Local Green Power Supply Plants Based on Alcohol Regenerative Gas Turbines: Economic and Environmental Aspects," Energies, MDPI, vol. 13(9), pages 1-20, May.
  25. Denver F. Cheddie, 2010. "Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant," Energies, MDPI, vol. 3(4), pages 1-16, April.
  26. Zhao, Lei & Michelsen, Finn Are & Foss, Bjarne, 2013. "Control design and dynamic simulation of an HMR pre-combustion power cycle based on economic measures," Energy, Elsevier, vol. 51(C), pages 171-183.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.