IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v29y2004i5p823-833.html
   My bibliography  Save this item

Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Agrafiotis, Christos & von Storch, Henrik & Roeb, Martin & Sattler, Christian, 2014. "Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 656-682.
  2. Yu, Zhi-Qiang & Feng, Yong-Liang & Zhou, Wen-Jing & Jin, Yu & Li, Ming-Jie & Li, Zeng-Yao & Tao, Wen-Quan, 2013. "Study on flow and heat transfer characteristics of composite porous material and its performance analysis by FSP and EDEP," Applied Energy, Elsevier, vol. 112(C), pages 1367-1375.
  3. Nimvari, Majid Eshagh & Jouybari, Nima Fallah & Esmaili, Qadir, 2018. "A new approach to mitigate intense temperature gradients in ceramic foam solar receivers," Renewable Energy, Elsevier, vol. 122(C), pages 206-215.
  4. Broeske, Robin Tim & Schwarzbözl, Peter & Birkigt, Lisa & Vasic, Srdan & Dung, Sebastian & Doerbeck, Till & Hoffschmidt, Bernhard, 2023. "Experimentally assessed efficiency improvement of innovative 3D-shaped structures as volumetric absorbers," Renewable Energy, Elsevier, vol. 218(C).
  5. Roldán, M.I. & Smirnova, O. & Fend, T. & Casas, J.L. & Zarza, E., 2014. "Thermal analysis and design of a volumetric solar absorber depending on the porosity," Renewable Energy, Elsevier, vol. 62(C), pages 116-128.
  6. Gomez-Garcia, Fabrisio & González-Aguilar, José & Olalde, Gabriel & Romero, Manuel, 2016. "Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 648-658.
  7. Xuewei Ni & Tiening Liu & Dong Liu, 2022. "Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver," Energies, MDPI, vol. 15(11), pages 1-12, May.
  8. Liu, Yun & Xie, Ling-tian & Shen, Wen-ran & Xu, Chao & Zhao, Bo-yang, 2023. "Relative flow direction modes and gradual porous parameters for radiation transport and interactions with thermochemical reaction in porous volumetric solar reactor," Renewable Energy, Elsevier, vol. 203(C), pages 612-621.
  9. Mardiana, A. & Riffat, S.B., 2013. "Review on physical and performance parameters of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 174-190.
  10. Capuano, Raffaele & Fend, Thomas & Schwarzbözl, Peter & Smirnova, Olena & Stadler, Hannes & Hoffschmidt, Bernhard & Pitz-Paal, Robert, 2016. "Numerical models of advanced ceramic absorbers for volumetric solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 656-665.
  11. Lidor, A. & Fend, T. & Roeb, M. & Sattler, C., 2021. "High performance solar receiver–reactor for hydrogen generation," Renewable Energy, Elsevier, vol. 179(C), pages 1217-1232.
  12. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
  13. Li, Qing & Bai, Fengwu & Yang, Bei & Wang, Zhifeng & El Hefni, Baligh & Liu, Sijie & Kubo, Syuichi & Kiriki, Hiroaki & Han, Mingxu, 2016. "Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant," Applied Energy, Elsevier, vol. 178(C), pages 281-293.
  14. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam," Energy, Elsevier, vol. 200(C).
  15. Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2015. "Experimental study on the effective thermal conductivity of hydrate-bearing sediments," Energy, Elsevier, vol. 79(C), pages 203-211.
  16. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
  17. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
  18. Reddy, K.S. & Nataraj, Sundarraj, 2019. "Thermal analysis of porous volumetric receivers of concentrated solar dish and tower systems," Renewable Energy, Elsevier, vol. 132(C), pages 786-797.
  19. Luo, Xiao & Wu, Dongxu & Huang, Congliang & Rao, Zhonghao, 2019. "Skeleton double layer structure for high solar steam generation," Energy, Elsevier, vol. 183(C), pages 1032-1039.
  20. Capuano, Raffaele & Fend, Thomas & Stadler, Hannes & Hoffschmidt, Bernhard & Pitz-Paal, Robert, 2017. "Optimized volumetric solar receiver: Thermal performance prediction and experimental validation," Renewable Energy, Elsevier, vol. 114(PB), pages 556-566.
  21. Xu, Chang & Song, Zhe & Chen, Lea-der & Zhen, Yuan, 2011. "Numerical investigation on porous media heat transfer in a solar tower receiver," Renewable Energy, Elsevier, vol. 36(3), pages 1138-1144.
  22. Albdoor, A.K. & Ma, Z. & Al-Ghazzawi, F. & Arıcı, M., 2022. "Study on recent progress and advances in air-to-air membrane enthalpy exchangers: Materials selection, performance improvement, design optimisation and effects of operating conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  23. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
  24. Roldán, M.I. & Monterreal, R., 2014. "Heat flux and temperature prediction on a volumetric receiver installed in a solar furnace," Applied Energy, Elsevier, vol. 120(C), pages 65-74.
  25. Ashley, Thomas & Carrizosa, Emilio & Fernández-Cara, Enrique, 2017. "Optimisation of aiming strategies in Solar Power Tower plants," Energy, Elsevier, vol. 137(C), pages 285-291.
  26. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2018. "Three-dimensional modelling and analysis of solar radiation absorption in porous volumetric receivers," Applied Energy, Elsevier, vol. 215(C), pages 602-614.
  27. Rashidi, Saman & Esfahani, Javad Abolfazli & Rashidi, Abbas, 2017. "A review on the applications of porous materials in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1198-1210.
  28. Fend, Th. & Schwarzbözl, P. & Smirnova, O. & Schöllgen, D. & Jakob, C., 2013. "Numerical investigation of flow and heat transfer in a volumetric solar receiver," Renewable Energy, Elsevier, vol. 60(C), pages 655-661.
  29. He, Y.L. & Cheng, Z.D. & Cui, F.Q. & Li, Z.Y. & Li, D., 2012. "Numerical investigations on a pressurized volumetric receiver: Solar concentrating and collecting modelling," Renewable Energy, Elsevier, vol. 44(C), pages 368-379.
  30. Nakakura, Mitsuho & Matsubara, Koji & Cho, Hyun-Seok & Kodama, Tatsuya & Gokon, Nobuyuki & Bellan, Selvan & Yoshida, Kazuo, 2017. "Buoyancy-opposed volumetric solar receiver with beam-down optics irradiation," Energy, Elsevier, vol. 141(C), pages 2337-2350.
  31. Yamani, Noureddine & Khellaf, Abdallah & Mohammedi, Kamal & Behar, Omar, 2017. "Assessment of solar thermal tower technology under Algerian climate," Energy, Elsevier, vol. 126(C), pages 444-460.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.