IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3899-d823660.html
   My bibliography  Save this article

Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver

Author

Listed:
  • Xuewei Ni

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    These authors contributed equally to this work.)

  • Tiening Liu

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    These authors contributed equally to this work.)

  • Dong Liu

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract

A porous volumetric receiver is the key component in concentrated solar power systems. In this paper, we investigate the effects of volumetric parameter models on the heat collection efficiency of the volumetric receiver by numerical simulations with the combination of local thermal non-equilibrium and discrete ordinate methods. Seven volumetric convective heat transfer coefficient models and three extinction coefficient models were investigated. The efficiencies calculated using these models were compared among each other. The results show that volumetric convective heat transfer coefficient models have significant effects with a maximum difference of 27.7% in receiver efficiency for these models. Extinction coefficient models have less effects on receiver efficiency with a maximum difference of 7.3%.

Suggested Citation

  • Xuewei Ni & Tiening Liu & Dong Liu, 2022. "Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver," Energies, MDPI, vol. 15(11), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3899-:d:823660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fend, Thomas & Hoffschmidt, Bernhard & Pitz-Paal, Robert & Reutter, Oliver & Rietbrock, Peter, 2004. "Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties," Energy, Elsevier, vol. 29(5), pages 823-833.
    2. Viebahn, Peter & Lechon, Yolanda & Trieb, Franz, 2011. "The potential role of concentrated solar power (CSP) in Africa and Europe--A dynamic assessment of technology development, cost development and life cycle inventories until 2050," Energy Policy, Elsevier, vol. 39(8), pages 4420-4430, August.
    3. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    4. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam," Energy, Elsevier, vol. 200(C).
    5. Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
    6. Zhu, Qibin & Xuan, Yimin, 2019. "Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics," Energy, Elsevier, vol. 172(C), pages 467-476.
    7. Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
    8. Aichmayer, Lukas & Garrido, Jorge & Wang, Wujun & Laumert, Björn, 2018. "Experimental evaluation of a novel solar receiver for a micro gas-turbine based solar dish system in the KTH high-flux solar simulator," Energy, Elsevier, vol. 159(C), pages 184-195.
    9. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2018. "Three-dimensional modelling and analysis of solar radiation absorption in porous volumetric receivers," Applied Energy, Elsevier, vol. 215(C), pages 602-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    2. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    3. Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
    4. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    5. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam," Energy, Elsevier, vol. 200(C).
    6. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    7. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Rose, Andrew & Taylor, Robert A., 2022. "Optical analysis of a semi-transparent packed bed of spheres for next-generation volumetric solar receivers," Energy, Elsevier, vol. 252(C).
    8. Godini, Ali & Kheradmand, Saeid, 2021. "Optimization of volumetric solar receiver geometry and porous media specifications," Renewable Energy, Elsevier, vol. 172(C), pages 574-581.
    9. Erany D. G. Constantino & Senhorinha F. C. F. Teixeira & José C. F. Teixeira & Flavia V. Barbosa, 2022. "Innovative Solar Concentration Systems and Its Potential Application in Angola," Energies, MDPI, vol. 15(19), pages 1-28, September.
    10. Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
    11. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    12. Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
    13. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    14. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    15. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    16. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    17. Broeske, Robin Tim & Schwarzbözl, Peter & Birkigt, Lisa & Vasic, Srdan & Dung, Sebastian & Doerbeck, Till & Hoffschmidt, Bernhard, 2023. "Experimentally assessed efficiency improvement of innovative 3D-shaped structures as volumetric absorbers," Renewable Energy, Elsevier, vol. 218(C).
    18. del Río, Pablo & Peñasco, Cristina & Mir-Artigues, Pere, 2018. "An overview of drivers and barriers to concentrated solar power in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1019-1029.
    19. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    20. van den Broek, Machteld & Berghout, Niels & Rubin, Edward S., 2015. "The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1296-1322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3899-:d:823660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.