IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v200y2020ics0360544220306277.html
   My bibliography  Save this item

A new hybrid model for forecasting Brent crude oil price

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen, Haixin & Liu, Yancheng & Li, Xiangjie & Gu, Xiang & Fan, Kun, 2024. "Oil market regulatory: An ensembled model for prediction," Finance Research Letters, Elsevier, vol. 67(PA).
  2. Liu, Jinpei & Zhao, Xiaoman & Luo, Rui & Tao, Zhifu, 2024. "A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information," Applied Energy, Elsevier, vol. 376(PB).
  3. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
  4. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
  5. Emami Javanmard, M. & Tang, Y. & Wang, Z. & Tontiwachwuthikul, P., 2023. "Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector," Applied Energy, Elsevier, vol. 338(C).
  6. Hajirahimi, Zahra & Khashei, Mehdi & Etemadi, Sepideh, 2022. "A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  7. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
  8. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
  9. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
  10. Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
  11. Ane-Mari Androniceanu & Raluca Dana Căplescu & Manuela Tvaronavičienė & Cosmin Dobrin, 2021. "The Interdependencies between Economic Growth, Energy Consumption and Pollution in Europe," Energies, MDPI, vol. 14(9), pages 1-23, April.
  12. Jia, Miaoyin & Lu, Gan & Yan, Youliang & Nazir, Sidra, 2024. "Resilience through mineral resource development, oil, and natural resource efficiency: Strengthening economies," Resources Policy, Elsevier, vol. 91(C).
  13. Niu, Hongli & Xu, Kunliang & Liu, Cheng, 2021. "A decomposition-ensemble model with regrouping method and attention-based gated recurrent unit network for energy price prediction," Energy, Elsevier, vol. 231(C).
  14. Mohsin, Muhammad & Jamaani, Fouad, 2023. "Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning," Resources Policy, Elsevier, vol. 85(PA).
  15. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
  16. Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
  17. Hasnain Iftikhar & Aimel Zafar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Brent Crude Oil Prices Using Hybrid Combinations of Time Series Models," Mathematics, MDPI, vol. 11(16), pages 1-19, August.
  18. Dong-Her Shih & Ting-Wei Wu & Ming-Hung Shih & Min-Jui Yang & David C. Yen, 2022. "A Novel βSA Ensemble Model for Forecasting the Number of Confirmed COVID-19 Cases in the US," Mathematics, MDPI, vol. 10(5), pages 1-15, March.
  19. Hajirahimi, Zahra & Khashei, Mehdi, 2022. "Series Hybridization of Parallel (SHOP) models for time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  20. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
  21. Arash Sioofy Khoojine & Mahboubeh Shadabfar & Yousef Edrisi Tabriz, 2022. "A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
  22. Pavel Baboshkin & Mafura Uandykova, 2021. "Multi-source Model of Heterogeneous Data Analysis for Oil Price Forecasting," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 384-391.
  23. Fang, Tianhui & Zheng, Chunling & Wang, Donghua, 2023. "Forecasting the crude oil prices with an EMD-ISBM-FNN model," Energy, Elsevier, vol. 263(PA).
  24. Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).
  25. Ali, Aliyuda, 2021. "Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns," Energy, Elsevier, vol. 229(C).
  26. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
  27. A. Usha Ruby & J. George Chellin Chandran & B. N. Chaithanya & T. J. Swasthika Jain & Renuka Patil, 2024. "Effective Crude Oil Prediction Using CHS-EMD Decomposition and PS-RNN Model," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1295-1314, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.