IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v139y2017icp142-154.html
   My bibliography  Save this item

Novel validated method for GIS based automated dynamic urban building energy simulations

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hedegaard, Rasmus Elbæk & Kristensen, Martin Heine & Pedersen, Theis Heidmann & Brun, Adam & Petersen, Steffen, 2019. "Bottom-up modelling methodology for urban-scale analysis of residential space heating demand response," Applied Energy, Elsevier, vol. 242(C), pages 181-204.
  2. De Jaeger, Ina & Reynders, Glenn & Ma, Yixiao & Saelens, Dirk, 2018. "Impact of building geometry description within district energy simulations," Energy, Elsevier, vol. 158(C), pages 1060-1069.
  3. Schweiger, Gerald & Heimrath, Richard & Falay, Basak & O'Donovan, Keith & Nageler, Peter & Pertschy, Reinhard & Engel, Georg & Streicher, Wolfgang & Leusbrock, Ingo, 2018. "District energy systems: Modelling paradigms and general-purpose tools," Energy, Elsevier, vol. 164(C), pages 1326-1340.
  4. Heidenthaler, Daniel & Deng, Yingwen & Leeb, Markus & Grobbauer, Michael & Kranzl, Lukas & Seiwald, Lena & Mascherbauer, Philipp & Reindl, Patricia & Bednar, Thomas, 2023. "Automated energy performance certificate based urban building energy modelling approach for predicting heat load profiles of districts," Energy, Elsevier, vol. 278(PB).
  5. Benedetta Grassi & Edoardo Alessio Piana & Gian Paolo Beretta & Mariagrazia Pilotelli, 2020. "Dynamic Approach to Evaluate the Effect of Reducing District Heating Temperature on Indoor Thermal Comfort," Energies, MDPI, vol. 14(1), pages 1-25, December.
  6. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
  7. Johari, F. & Peronato, G. & Sadeghian, P. & Zhao, X. & Widén, J., 2020. "Urban building energy modeling: State of the art and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
  8. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  9. Nageler, P. & Heimrath, R. & Mach, T. & Hochenauer, C., 2019. "Prototype of a simulation framework for georeferenced large-scale dynamic simulations of district energy systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  10. Buffat, René & Froemelt, Andreas & Heeren, Niko & Raubal, Martin & Hellweg, Stefanie, 2017. "Big data GIS analysis for novel approaches in building stock modelling," Applied Energy, Elsevier, vol. 208(C), pages 277-290.
  11. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
  12. Wang, Wei & Hong, Tianzhen & Xu, Xiaodong & Chen, Jiayu & Liu, Ziang & Xu, Ning, 2019. "Forecasting district-scale energy dynamics through integrating building network and long short-term memory learning algorithm," Applied Energy, Elsevier, vol. 248(C), pages 217-230.
  13. Valeria Todeschi & Roberto Boghetti & Jérôme H. Kämpf & Guglielmina Mutani, 2021. "Evaluation of Urban-Scale Building Energy-Use Models and Tools—Application for the City of Fribourg, Switzerland," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
  14. Simone Ferrari & Federica Zagarella & Paola Caputo & Giuliano Dall’O’, 2021. "A GIS-Based Procedure for Estimating the Energy Demand Profiles of Buildings towards Urban Energy Policies," Energies, MDPI, vol. 14(17), pages 1-16, September.
  15. Ang, Yu Qian & Berzolla, Zachary Michael & Reinhart, Christoph F., 2020. "From concept to application: A review of use cases in urban building energy modeling," Applied Energy, Elsevier, vol. 279(C).
  16. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
  17. Johan Simonsson & Khalid Tourkey Atta & Gerald Schweiger & Wolfgang Birk, 2021. "Experiences from City-Scale Simulation of Thermal Grids," Resources, MDPI, vol. 10(2), pages 1-20, January.
  18. Zhang Deng & Yixing Chen & Xiao Pan & Zhiwen Peng & Jingjing Yang, 2021. "Integrating GIS-Based Point of Interest and Community Boundary Datasets for Urban Building Energy Modeling," Energies, MDPI, vol. 14(4), pages 1-17, February.
  19. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
  20. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2019. "Validation of the climatic zoning defined by ASHRAE standard 169-2013," Energy Policy, Elsevier, vol. 135(C).
  21. Michael Mans & Tobias Blacha & Thomas Schreiber & Dirk Müller, 2022. "Development and Application of an Open-Source Framework for Automated Thermal Network Generation and Simulations in Modelica," Energies, MDPI, vol. 15(12), pages 1-25, June.
  22. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
  23. Kerryn R Owen & Ripon K Chakrabortty, 2024. "Verification, validation, and accreditation for models and simulations in the Australian defence context: a review," The Journal of Defense Modeling and Simulation, , vol. 21(2), pages 205-227, April.
  24. Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
  25. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
  26. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.