IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v137y2017icp961-968.html
   My bibliography  Save this item

Experimental validation of heat transport modelling in district heating networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
  2. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  3. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).
  4. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
  5. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  6. Wang, Yang & Gillich, Aaron & LU, Daisy & Saber, Esmail Mahmoudi & Yebiyo, Metkel & Kang, Ren & Ford, Andy & Hewitt, Mark, 2021. "Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors," Energy, Elsevier, vol. 221(C).
  7. Song, William Hasung & Wang, Yang & Gillich, Aaron & Ford, Andy & Hewitt, Mark, 2019. "Modelling development and analysis on the Balanced Energy Networks (BEN) in London," Applied Energy, Elsevier, vol. 233, pages 114-125.
  8. Nageler, P. & Heimrath, R. & Mach, T. & Hochenauer, C., 2019. "Prototype of a simulation framework for georeferenced large-scale dynamic simulations of district energy systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  9. Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2020. "Thermal and economic analysis of preinsulated and twin-pipe heat network operation," Energy, Elsevier, vol. 193(C).
  10. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
  11. Dénarié, A. & Aprile, M. & Motta, M., 2019. "Heat transmission over long pipes: New model for fast and accurate district heating simulations," Energy, Elsevier, vol. 166(C), pages 267-276.
  12. Dénarié, A. & Aprile, M. & Motta, M., 2023. "Dynamical modelling and experimental validation of a fast and accurate district heating thermo-hydraulic modular simulation tool," Energy, Elsevier, vol. 282(C).
  13. Boghetti, Roberto & Kämpf, Jérôme H., 2024. "Verification of an open-source Python library for the simulation of district heating networks with complex topologies," Energy, Elsevier, vol. 290(C).
  14. Babiarz, Bożena & Blokus, Agnieszka, 2020. "Dependency of technological lines in reliability analysis of heat production," Energy, Elsevier, vol. 211(C).
  15. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
  16. Chertkov, Michael & Novitsky, Nikolai N., 2019. "Thermal Transients in District Heating Systems," Energy, Elsevier, vol. 184(C), pages 22-33.
  17. Kevin Sartor & Rémi Dickes, 2020. "Experimental Validation of Heat Transport Modelling in Large Solar Thermal Plants," Energies, MDPI, vol. 13(9), pages 1-11, May.
  18. Zheng, Xuejing & Shi, Zhiyuan & Wang, Yaran & Zhang, Huan & Liu, Huzhen, 2023. "Thermo-hydraulic condition optimization of large-scale complex district heating network: A case study of Tianjin," Energy, Elsevier, vol. 266(C).
  19. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Accounting for pipeline thermal capacity in district heating simulations," Energy, Elsevier, vol. 219(C).
  20. Meibodi, Saleh S. & Rees, Simon & Loveridge, Fleur, 2024. "Modeling district heating pipelines using a hybrid dynamic thermal network approach," Energy, Elsevier, vol. 290(C).
  21. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
  22. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
  23. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
  24. Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Vallati, Andrea & Quintino, Alessandro & Corcione, Massimo, 2019. "Numerical determination of temperature distribution in heating network," Energy, Elsevier, vol. 183(C), pages 880-891.
  25. Kevin Sartor, 2017. "Simulation Models to Size and Retrofit District Heating Systems," Energies, MDPI, vol. 10(12), pages 1-14, December.
  26. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  27. Zheng, Xuejing & Sun, Qihang & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & You, Shijun & Zhang, Huan & Shi, Kaiyu, 2021. "Thermo-hydraulic coupled simulation and analysis of a real large-scale complex district heating network in Tianjin," Energy, Elsevier, vol. 236(C).
  28. Jiang, Mengting & Speetjens, Michel & Rindt, Camilo & Smeulders, David, 2023. "A data-based reduced-order model for dynamic simulation and control of district-heating networks," Applied Energy, Elsevier, vol. 340(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.