IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v53y2013icp442-453.html
   My bibliography  Save this item

Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Baranzelli, Claudia & Vandecasteele, Ine & Ribeiro Barranco, Ricardo & Mari i Rivero, Ines & Pelletier, Nathan & Batelaan, Okke & Lavalle, Carlo, 2015. "Scenarios for shale gas development and their related land use impacts in the Baltic Basin, Northern Poland," Energy Policy, Elsevier, vol. 84(C), pages 80-95.
  2. Charles F. Mason & Lucija A. Muehlenbachs & Sheila M. Olmstead, 2015. "The Economics of Shale Gas Development," Annual Review of Resource Economics, Annual Reviews, vol. 7(1), pages 269-289, October.
  3. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
  4. Lozano Maya, Juan Roberto, 2013. "The United States experience as a reference of success for shale gas development: The case of Mexico," Energy Policy, Elsevier, vol. 62(C), pages 70-78.
  5. Liu, Jianye & Li, Zuxin & Luo, Dongkun & Duan, Xuqiang & Liu, Ruolei, 2020. "Shale gas production in China: A regional analysis of subsidies and suggestions for policy," Utilities Policy, Elsevier, vol. 67(C).
  6. Li, Boying & Zheng, Mingbo & Zhao, Xinxin & Chang, Chun-Ping, 2021. "An assessment of the effect of partisan ideology on shale gas production and the implications for environmental regulations," Economic Systems, Elsevier, vol. 45(3).
  7. Rabnawaz Khan, 2021. "Beta decoupling relationship between CO2 emissions by GDP, energy consumption, electricity production, value-added industries, and population in China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.
  8. Harrison Fell & Daniel T. Kaffine, 2018. "The Fall of Coal: Joint Impacts of Fuel Prices and Renewables on Generation and Emissions," American Economic Journal: Economic Policy, American Economic Association, vol. 10(2), pages 90-116, May.
  9. Xu, Shang & Allen Klaiber, H., 2019. "The impact of new natural gas pipelines on emissions and fuel consumption in China," Resource and Energy Economics, Elsevier, vol. 55(C), pages 49-62.
  10. Amedeo Argentiero, Tarek Atalla, Simona Bigerna, Silvia Micheli, and Paolo Polinori, 2017. "Comparing Renewable Energy Policies in EU-15, U.S. and China: A Bayesian DSGE Model," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
  11. Lenhard, L.G. & Andersen, S.M. & Coimbra-Araújo, C.H., 2018. "Energy-Environmental Implications Of Shale Gas Exploration In Paraná Hydrological Basin, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 56-69.
  12. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2015. "Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China," Energy, Elsevier, vol. 86(C), pages 335-343.
  13. Weber, Jeremy G. & Wang, Yongsheng & Chomas, Maxwell, 2016. "A quantitative description of state-level taxation of oil and gas production in the continental U.S," Energy Policy, Elsevier, vol. 96(C), pages 289-301.
  14. Fan, Jing-Li & Kong, Ling-Si & Zhang, Xian, 2018. "Synergetic effects of water and climate policy on energy-water nexus in China: A computable general equilibrium analysis," Energy Policy, Elsevier, vol. 123(C), pages 308-317.
  15. Cotton, Matthew & Barkemeyer, Ralf & Renzi, Barbara Gabriella & Napolitano, Giulio, 2019. "Fracking and metaphor: Analysing newspaper discourse in the USA, Australia and the United Kingdom," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
  16. Katie Jo Black & Shawn J. McCoy & Jeremy G. Weber, 2018. "When Externalities Are Taxed: The Effects and Incidence of Pennsylvania’s Impact Fee on Shale Gas Wells," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 107-153.
  17. Knudsen, Brage Rugstad & Foss, Bjarne, 2017. "Shale-gas wells as virtual storage for supporting intermittent renewables," Energy Policy, Elsevier, vol. 102(C), pages 142-144.
  18. Calderón, Andrés J. & Guerra, Omar J. & Papageorgiou, Lazaros G. & Reklaitis, Gintaras V., 2018. "Disclosing water-energy-economics nexus in shale gas development," Applied Energy, Elsevier, vol. 225(C), pages 710-731.
  19. Philipp M. Richter, 2015. "From Boom to Bust? A Critical Look at US Shale Gas Projections," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
  20. Raimi, Daniel, 2019. "The Greenhouse Gas Impacts of Increased US Oil and Gas Production," RFF Working Paper Series 19-03, Resources for the Future.
  21. Loucao, Sebastian, 2014. "External Effects of Hydraulic Fracturing: Risks and Welfare Considerations for Water Supply in Germany," FCN Working Papers 4/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Aug 2015.
  22. Muhammad Atif Iqbal & Reza Rezaee, 2020. "Porosity and Water Saturation Estimation for Shale Reservoirs: An Example from Goldwyer Formation Shale, Canning Basin, Western Australia," Energies, MDPI, vol. 13(23), pages 1-13, November.
  23. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
  24. Liuyang Yao & Dangchen Sui & Xiaotong Liu & Hui Fan, 2020. "The Psychological Process of Residents’ Acceptance of Local Shale Gas Exploitation in China," IJERPH, MDPI, vol. 17(18), pages 1-20, September.
  25. Martínez-Espiñeira, Roberto & García-Valiñas, María Á. & Matesanz, David, 2019. "Public Attitudes towards Hydraulic Fracturing in Western Newfoundland," Energy Economics, Elsevier, vol. 84(C).
  26. Xi Yang & Alun Gu & Fujie Jiang & Wenli Xie & Qi Wu, 2020. "Integrated Assessment Modeling of China’s Shale Gas Resource: Energy System Optimization, Environmental Cobenefits, and Methane Risk," Energies, MDPI, vol. 14(1), pages 1-24, December.
  27. Absar, Syeda Mariya & McManamay, Ryan A. & Preston, Benjamin L. & Taylor, Adam M., 2021. "Bridging global socioeconomic scenarios with policy adaptations to examine energy-water tradeoffs," Energy Policy, Elsevier, vol. 149(C).
  28. Cotton, Matthew & Rattle, Imogen & Van Alstine, James, 2014. "Shale gas policy in the United Kingdom: An argumentative discourse analysis," Energy Policy, Elsevier, vol. 73(C), pages 427-438.
  29. Yunna, Wu & Kaifeng, Chen & Yisheng, Yang & Tiantian, Feng, 2015. "A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 235-243.
  30. Stamford, Laurence & Azapagic, Adisa, 2014. "Life cycle environmental impacts of UK shale gas," Applied Energy, Elsevier, vol. 134(C), pages 506-518.
  31. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
  32. Auping, Willem L. & Pruyt, Erik & de Jong, Sijbren & Kwakkel, Jan H., 2016. "The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states," Energy Policy, Elsevier, vol. 98(C), pages 390-399.
  33. Gail Krantzberg & Stephanie Theriault, 2017. "Would Implementing Responsible Care® Principles Improve the Safety of the Fracking Industry?," International Journal of Sciences, Office ijSciences, vol. 6(06), pages 55-62, June.
  34. Eleanor Stephenson & Karena Shaw, 2013. "¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
  35. Liebensteiner, Mario & Wrienz, Matthias, 2020. "Do Intermittent Renewables Threaten the Electricity Supply Security?," Energy Economics, Elsevier, vol. 87(C).
  36. Yang, Xianyu & Cai, Jihua & Jiang, Guosheng & Xie, Jingyu & Shi, Yanping & Chen, Shuya & Yue, Ye & Yu, Lang & He, Yichao & Xie, Kunzhi, 2020. "Nanoparticle plugging prediction of shale pores: A numerical and experimental study," Energy, Elsevier, vol. 208(C).
  37. Darrick Evensen & Christopher Clarke & Richard Stedman, 2014. "A New York or Pennsylvania state of mind: social representations in newspaper coverage of gas development in the Marcellus Shale," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(1), pages 65-77, March.
  38. Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
  39. Wen Li & Yuxi Liu & Siqi Xiao & Yu Zhang & Lihe Chai, 2018. "An Investigation of the Underlying Evolution of Shale Gas Research’s Domain Based on the Co-Word Network," Sustainability, MDPI, vol. 10(1), pages 1-23, January.
  40. Yao, Liuyang & Sui, Bo, 2020. "Heterogeneous preferences for shale water management: Evidence from a choice experiment in Fuling shale gas field, southwest China," Energy Policy, Elsevier, vol. 147(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.