IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v38y2010i3p1379-1388.html
   My bibliography  Save this item

Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chiroleu-Assouline, Mireille & Fodha, Mouez & Kirat, Yassine, 2020. "Carbon curse in developed countries," Energy Economics, Elsevier, vol. 90(C).
  2. Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
  3. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
  4. Shi, Xunpeng & Yu, Jian & Cheong, Tsun Se, 2020. "Convergence and distribution dynamics of energy consumption among China's households," Energy Policy, Elsevier, vol. 142(C).
  5. Xie, Shi-Chen, 2014. "The driving forces of China׳s energy use from 1992 to 2010: An empirical study of input–output and structural decomposition analysis," Energy Policy, Elsevier, vol. 73(C), pages 401-415.
  6. Yuan, Jiahai & Kang, Junjie & Yu, Cong & Hu, Zhaoguang, 2011. "Energy conservation and emissions reduction in China—Progress and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4334-4347.
  7. Wang, Feng & Yin, Haitao & Li, Shoude, 2010. "China's renewable energy policy: Commitments and challenges," Energy Policy, Elsevier, vol. 38(4), pages 1872-1878, April.
  8. Kahrl, Fredrich & Roland-Holst, David & Zilberman, David, 2013. "Past as Prologue? Understanding energy use in post-2002 China," Energy Economics, Elsevier, vol. 36(C), pages 759-771.
  9. Roula Inglesi-Lotz, 2017. "Decomposing the South African CO2 Emissions within a BRICS Countries Context the Energy Rebound Hypothesis," Working Papers 201751, University of Pretoria, Department of Economics.
  10. Oludolapo A Olanrewaju, 2018. "Energy consumption in South African industry: A decomposition analysis using the LMDI approach," Energy & Environment, , vol. 29(2), pages 232-244, March.
  11. Inglesi-Lotz, R., 2019. "Energy research and R&D indicators: An LMDI decomposition analysis for the IEA Big 5 in energy research," Energy Policy, Elsevier, vol. 133(C).
  12. Inglesi-Lotz, R. & Blignaut, J.N., 2012. "Electricity intensities of the OECD and South Africa: A comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4491-4499.
  13. Ito, Toshihide & Chen, Youqing & Ito, Shoichi & Yamaguchi, Kaoru, 2010. "Prospect of the upper limit of the energy demand in China from regional aspects," Energy, Elsevier, vol. 35(12), pages 5320-5327.
  14. Liu, Nan & Ma, Zujun & Kang, Jidong, 2015. "Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis," Energy Policy, Elsevier, vol. 87(C), pages 28-38.
  15. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
  16. Lin, Boqiang & Zhang, Li & Wu, Ya, 2012. "Evaluation of electricity saving potential in China's chemical industry based on cointegration," Energy Policy, Elsevier, vol. 44(C), pages 320-330.
  17. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
  18. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
  19. Lei Jiang & Minhe Ji, 2016. "China’s Energy Intensity, Determinants and Spatial Effects," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
  20. Jin Zhang & David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, , vol. 37(1_suppl), pages 29-54, January.
  21. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
  22. Lo, Kevin & Wang, Mark Y., 2013. "Energy conservation in China’s Twelfth Five-Year Plan period: Continuation or paradigm shift?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 499-507.
  23. Jacob Hawkins & Chunbo Ma & Steven Schilizzi & Fan Zhang, 2018. "China's changing diet and its impacts on greenhouse gas emissions: an index decomposition analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 45-64, January.
  24. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
  25. Zhou, Zhongbing & Qin, Quande & Wei, Yi-Ming, 2020. "Government intervention in energy conservation: Justification and warning," Energy Economics, Elsevier, vol. 90(C).
  26. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
  27. Sebestyénné Szép, Tekla, 2018. "A hatósági árcsökkentés lakossági energiafelhasználásra gyakorolt hatásának vizsgálata indexdekompozícióval [Analysing the effects of utility-cost reduction on household energy consumption, using i," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 185-205.
  28. Zhang, Jing & Deng, Shihuai & Shen, Fei & Yang, Xinyao & Liu, Guodong & Guo, Hang & Li, Yuanwei & Hong, Xiao & Zhang, Yanzong & Peng, Hong & Zhang, Xiaohong & Li, Li & Wang, Yingjun, 2011. "Modeling the relationship between energy consumption and economy development in China," Energy, Elsevier, vol. 36(7), pages 4227-4234.
  29. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
  30. Inglesi-Lotz, Roula & Blignaut, James N., 2011. "South Africa’s electricity consumption: A sectoral decomposition analysis," Applied Energy, Elsevier, vol. 88(12), pages 4779-4784.
  31. Chong, ChinHao & Ma, Linwei & Li, Zheng & Ni, Weidou & Song, Shizhong, 2015. "Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows," Energy, Elsevier, vol. 85(C), pages 366-378.
  32. Muhlis Can & Zahoor Ahmed, 2023. "Towards sustainable development in the European Union countries: Does economic complexity affect renewable and non‐renewable energy consumption?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 439-451, February.
  33. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
  34. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
  35. Georgia Makridou, Kostas Andriosopoulos, Michael Doumpos, and Constantin Zopounidis, 2015. "A Two-stage approach for energy efficiency analysis in European Union countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  36. Zhang, Daisheng & Aunan, Kristin & Martin Seip, Hans & Vennemo, Haakon, 2011. "The energy intensity target in China's 11th Five-Year Plan period--Local implementation and achievements in Shanxi Province," Energy Policy, Elsevier, vol. 39(7), pages 4115-4124, July.
  37. Wang, Nannan & Chang, Yen-Chiang, 2014. "The evolution of low-carbon development strategies in China," Energy, Elsevier, vol. 68(C), pages 61-70.
  38. Driha, Oana & Cascetta, Furio & Nardini, Sergio & Bianco, Vincenzo, 2023. "Evolution of renewable energy generation in EU27. A decomposition analysis," Renewable Energy, Elsevier, vol. 207(C), pages 348-358.
  39. Wang, Ce & Liao, Hua & Pan, Su-Yan & Zhao, Lu-Tao & Wei, Yi-Ming, 2014. "The fluctuations of China’s energy intensity: Biased technical change," Applied Energy, Elsevier, vol. 135(C), pages 407-414.
  40. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
  41. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
  42. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
  43. Zhao, Xiaoli & Lyon, Thomas P. & Song, Cui, 2012. "Lurching towards markets for power: China’s electricity policy 1985–2007," Applied Energy, Elsevier, vol. 94(C), pages 148-155.
  44. Inglesi-Lotz, Roula, 2018. "Decomposing the South African CO2 emissions within a BRICS countries context: Signalling potential energy rebound effects," Energy, Elsevier, vol. 147(C), pages 648-654.
  45. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
  46. Yu, Huayi, 2012. "The influential factors of China's regional energy intensity and its spatial linkages: 1988–2007," Energy Policy, Elsevier, vol. 45(C), pages 583-593.
  47. Qin, Quande & Yu, Ying & Liu, Yuan & Zhou, Jianqing & Chen, Xiude, 2023. "Industrial agglomeration and energy efficiency: A new perspective from market integration," Energy Policy, Elsevier, vol. 183(C).
  48. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
  49. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
  50. Yue Liu & Siming Liu & Xueying Xu & Pierre Failler, 2020. "Does Energy Price Induce China’s Green Energy Innovation?," Energies, MDPI, vol. 13(15), pages 1-18, August.
  51. Dayong Zhang & David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, , vol. 37(3), pages 137-158, July.
  52. Huang, Junbing & Lai, Yali & Wang, Yajun & Hao, Yu, 2020. "Energy-saving research and development activities and energy intensity in China: A regional comparison perspective," Energy, Elsevier, vol. 213(C).
  53. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
  54. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
  55. Zha, DongLan & Zhou, DeQun & Ding, Ning, 2012. "The determinants of aggregated electricity intensity in China," Applied Energy, Elsevier, vol. 97(C), pages 150-156.
  56. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
  57. Gandhi, Oktoviano & Oshiro, Andre H. & Medeiros Costa, Hirdan Katarina de & Santos, Edmilson M., 2017. "Energy intensity trend explained for Sao Paulo state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1046-1054.
  58. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
  59. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
  60. Li, Meng & Gao, Yuning & Liu, Shenglong, 2020. "China’s energy intensity change in 1997–2015: Non-vertical adjusted structural decomposition analysis based on input-output tables," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 222-236.
  61. Zhang, Jiefeng & Bai, Zhipeng & Chang, Victor W.C. & Ding, Xiao, 2011. "Balancing BEC and IAQ in civil buildings during rapid urbanization in China: Regulation, interplay and collaboration," Energy Policy, Elsevier, vol. 39(10), pages 5778-5790, October.
  62. Lars Wenzel & Andr Wolf, 2014. "Changing Patterns of Electricity Usage in European Manufacturing: A Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 516-530.
  63. Peng Hou & Yilin Li & Yong Tan & Yuanjie Hou, 2020. "Energy Price and Energy Efficiency in China: A Linear and Nonlinear Empirical Investigation," Energies, MDPI, vol. 13(16), pages 1-24, August.
  64. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
  65. Cheong, Tsun Se & Li, Victor Jing & Shi, Xunpeng, 2019. "Regional disparity and convergence of electricity consumption in China: A distribution dynamics approach," China Economic Review, Elsevier, vol. 58(C).
  66. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
  67. Stefan Nabernegg & Birgit Bednar-Friedl & Fabian Wagner & Thomas Schinko & Janusz Cofala & Yadira Mori Clement, 2017. "The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India," Energies, MDPI, vol. 10(3), pages 1-26, March.
  68. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
  69. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
  70. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
  71. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
  72. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
  73. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
  74. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
  75. Herrerias, M.J. & Joyeux, R. & Girardin, E., 2013. "Short- and long-run causality between energy consumption and economic growth: Evidence across regions in China," Applied Energy, Elsevier, vol. 112(C), pages 1483-1492.
  76. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
  77. Juan Wang & Tao Zhao & Xiaohu Zhang, 2017. "Changes in carbon intensity of China’s energy-intensive industries: a combined decomposition and attribution analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1655-1675, September.
  78. Tekla Sebestyén Szép, 2013. "Eight Methods for Decomposing the Aggregate Energy Intensity of the Economic Structure," Theory Methodology Practice (TMP), Faculty of Economics, University of Miskolc, vol. 9(01), pages 77-84.
  79. Wu, Jianxin & Wu, Yanrui & Se Cheong, Tsun & Yu, Yanni, 2018. "Distribution dynamics of energy intensity in Chinese cities," Applied Energy, Elsevier, vol. 211(C), pages 875-889.
  80. Huang, Junbing & Luan, Bingjiang & He, Wanrui & Chen, Xiang & Li, Mengfan, 2022. "Energy technology of conservation versus substitution and energy intensity in China," Energy, Elsevier, vol. 244(PA).
  81. Herrerias, M.J. & Cuadros, A. & Orts, V., 2013. "Energy intensity and investment ownership across Chinese provinces," Energy Economics, Elsevier, vol. 36(C), pages 286-298.
  82. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
  83. Raza, Muhammad Yousaf & Lin, Boqiang, 2024. "Energy transition, carbon trade and sustainable electricity generation in Pakistan," Applied Energy, Elsevier, vol. 372(C).
  84. Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
  85. Zhao, Xiaoli & Yin, Haitao, 2011. "Industrial relocation and energy consumption: Evidence from China," Energy Policy, Elsevier, vol. 39(5), pages 2944-2956, May.
  86. Herrerias, M.J. & Cuadros, A. & Luo, D., 2016. "Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions," Applied Energy, Elsevier, vol. 162(C), pages 1374-1384.
  87. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
  88. Guanghui Tian & Jianming Miao & Changhong Miao & Yehua Dennis Wei & Dongyang Yang, 2022. "Interplay of Environmental Regulation and Local Protectionism in China," IJERPH, MDPI, vol. 19(10), pages 1-21, May.
  89. Xiaoli, Zhao & Rui, Yang & Qian, Ma, 2014. "China's total factor energy efficiency of provincial industrial sectors," Energy, Elsevier, vol. 65(C), pages 52-61.
  90. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.
  91. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
  92. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
  93. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
  94. Tajudeen, Ibrahim A. & Wossink, Ada & Banerjee, Prasenjit, 2018. "How significant is energy efficiency to mitigate CO2 emissions? Evidence from OECD countries," Energy Economics, Elsevier, vol. 72(C), pages 200-221.
  95. Zhipeng Tang & Jialing Zou & Shuang Wu, 2018. "What Drove Changes in the Embodied Energy Consumption of Guangdong’s Exports from 2007–2012?," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
  96. Liang, Sai & Zhang, Tianzhu, 2011. "What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province," Energy Policy, Elsevier, vol. 39(11), pages 7078-7083.
  97. Weiner, Csaba & Szép, Tekla, 2021. "Még egyszer a lakossági hatósági energiaárakról. Egy hungarikum átfogó hatáselemzése [Once again on regulated residential energy prices. A comprehensive impact assessment of a hungarian measure]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1276-1314.
  98. Ke, Jing & Price, Lynn & Ohshita, Stephanie & Fridley, David & Khanna, Nina Zheng & Zhou, Nan & Levine, Mark, 2012. "China's industrial energy consumption trends and impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects," Energy Policy, Elsevier, vol. 50(C), pages 562-569.
  99. Liu, Jie & Qian, Haoqi & Zhang, Qian & Lin, Zhiyan & Siano, Pierluigi, 2023. "Corruption induced energy inefficiencies: Evidence from China's energy investment projects," Energy Policy, Elsevier, vol. 183(C).
  100. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
  101. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
  102. Yu, Shiwei & Zheng, Shuhong & Zhang, Xuejiao & Gong, Chengzhu & Cheng, Jinhua, 2018. "Realizing China's goals on energy saving and pollution reduction: Industrial structure multi-objective optimization approach," Energy Policy, Elsevier, vol. 122(C), pages 300-312.
  103. Pan Zhang & Jiannan Wu, 2018. "Performance-Based or Politic-Related Decomposition of Environmental Targets: A Multilevel Analysis in China," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
  104. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
  105. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
  106. Hao, Yu & Li, Ying & Guo, Yunxia & Chai, Jingxia & Yang, Chuxiao & Wu, Haitao, 2022. "Digitalization and electricity consumption: Does internet development contribute to the reduction in electricity intensity in China?," Energy Policy, Elsevier, vol. 164(C).
  107. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
  108. Fu, Tong & Cai, Chao & Jian, Ze, 2020. "The illusion of “win–win” solution: Why environmental regulation in china promotes firm performance?," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 366-373.
  109. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
  110. Juan Wang & Tao Zhao & Xianshuo Xu & Xiaohu Zhang, 2016. "Exploring the changes of energy-related carbon intensity in China: an extended Divisia index decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 501-521, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.