IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v29y2001i11p847-869.html
   My bibliography  Save this item

Waiting for the boom: : a simulation study of power plant construction in California

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hasani, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic assessment of capacity investment in electricity market considering complementary capacity mechanisms," Energy, Elsevier, vol. 36(1), pages 277-293.
  2. de Vries, Laurens & Heijnen, Petra, 2008. "The impact of electricity market design upon investment under uncertainty: The effectiveness of capacity mechanisms," Utilities Policy, Elsevier, vol. 16(3), pages 215-227, September.
  3. Arango, Santiago & Castañeda, Jaime A. & Larsen, Erik R., 2013. "Mothballing in power markets: An experimental study," Energy Economics, Elsevier, vol. 36(C), pages 125-134.
  4. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
  5. Jin, Wei & Xu, Linyu & Yang, Zhifeng, 2009. "Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint," Ecological Economics, Elsevier, vol. 68(12), pages 2938-2949, October.
  6. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
  7. Saysel, Ali Kerem & Hekimoğlu, Mustafa, 2013. "Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach," Energy Policy, Elsevier, vol. 60(C), pages 675-686.
  8. Yücel, Gönenç & van Daalen, Cornelia, 2012. "A simulation-based analysis of transition pathways for the Dutch electricity system," Energy Policy, Elsevier, vol. 42(C), pages 557-568.
  9. Joseph Palazzo & Roland Geyer & Sangwon Suh, 2020. "A review of methods for characterizing the environmental consequences of actions in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 815-829, August.
  10. Hary, Nicolas & Rious, Vincent & Saguan, Marcelo, 2016. "The electricity generation adequacy problem: Assessing dynamic effects of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 91(C), pages 113-127.
  11. Ford, Andrew & Vogstad, Klaus & Flynn, Hilary, 2007. "Simulating price patterns for tradable green certificates to promote electricity generation from wind," Energy Policy, Elsevier, vol. 35(1), pages 91-111, January.
  12. Marie Petitet, Dominique Finon, and Tanguy Janssen, 2016. "Carbon Price instead of Support Schemes: Wind Power Investments by the Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  13. Arango, Santiago & Dyner, Isaac & Larsen, Erik R., 2006. "Lessons from deregulation: Understanding electricity markets in South America," Utilities Policy, Elsevier, vol. 14(3), pages 196-207, September.
  14. Ingo Vogelsang, 2004. "Network Utilities in the U.S. - Sector Reforms without Privatization," CESifo Working Paper Series 1142, CESifo.
  15. Andrew Ford, 2018. "Simulating systems with fast and slow dynamics: lessons from the electric power industry," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 222-254, January.
  16. Andrew Ford, 2002. "Boom and Bust in Power Plant Construction: Lessons from the California Electricity Crisis," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 59-74, June.
  17. Álvaro López-Peña & Efraim Centeno & Julián Barquín, 2009. "Long term issues to be addressed by regulators in liberalised electricity systems: generation adequacy and indicative planning. Justification, available mechanisms, and a simulation study on some conc," RSCAS Working Papers 2009/67, European University Institute.
  18. Teufel, Felix & Miller, Michael & Genoese, Massimo & Fichtner, Wolf, 2013. "Review of System Dynamics models for electricity market simulations," Working Paper Series in Production and Energy 2, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  19. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
  20. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
  21. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic model for market-based capacity investment decision considering stochastic characteristic of wind power," Renewable Energy, Elsevier, vol. 36(8), pages 2205-2219.
  22. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2013. "Dynamic analysis of various investment incentives and regional capacity assignment in Iranian electricity market," Energy Policy, Elsevier, vol. 56(C), pages 271-284.
  23. Marchenko, O.V., 2007. "Mathematical modelling of electricity market with renewable energy sources," Renewable Energy, Elsevier, vol. 32(6), pages 976-990.
  24. Ottie Nabors & George Backus & Jeff Amlin, 2002. "Simulating Effects of Business Decisions on Regional Economy Experience During the California Energy Crisis," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 143-158, June.
  25. Marek Kočan, 2008. "Cyclic behavior in dynamic investment decisions for deregulated energy markets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(1), pages 67-78, March.
  26. Assili, Mohsen & Javidi D.B., M. Hossein & Ghazi, Reza, 2008. "An improved mechanism for capacity payment based on system dynamics modeling for investment planning in competitive electricity environment," Energy Policy, Elsevier, vol. 36(10), pages 3703-3713, October.
  27. Arango, Santiago & Larsen, Erik, 2011. "Cycles in deregulated electricity markets: Empirical evidence from two decades," Energy Policy, Elsevier, vol. 39(5), pages 2457-2466, May.
  28. Alishahi, E. & Moghaddam, M. Parsa & Sheikh-El-Eslami, M.K., 2012. "A system dynamics approach for investigating impacts of incentive mechanisms on wind power investment," Renewable Energy, Elsevier, vol. 37(1), pages 310-317.
  29. Eager,D. & Hobbs, B. & Bialek, J., 2012. "Dynamic Long-Term Modelling of Generation Capacity Investment and Capacity Margins: a GB Market Case Study," Cambridge Working Papers in Economics 1217, Faculty of Economics, University of Cambridge.
  30. Janne Kettunen, Derek W. Bunn and William Blyth & Derek W. Bunn & William Blyth, 2011. "Investment Propensities under Carbon Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-118.
  31. Ibanez-Lopez, A.S. & Martinez-Val, J.M. & Moratilla-Soria, B.Y., 2017. "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, Elsevier, vol. 102(C), pages 170-188.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.