My bibliography
Save this item
Changing energy intensity in Chinese industry : The relatively importance of structural shift and intensity change
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hong, Qianqian & Cui, Linhao & Hong, Penghui, 2022. "The impact of carbon emissions trading on energy efficiency: Evidence from quasi-experiment in China's carbon emissions trading pilot," Energy Economics, Elsevier, vol. 110(C).
- WEI Chu & SHEN Man-hong, 2009.
"What is the driving force of the energy productivity? Evidence from China,"
Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 4(2), pages 265-273, June.
- Chu Wei & Man-hong Shen, 2009. "What is the driving force of the energy productivity? Evidence from China," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(2), pages 265-273, June.
- Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
- Worrell, Ernst & Price, Lynn & Martin, Nathan & Farla, Jacco & Schaeffer, Roberto, 1997. "Energy intensity in the iron and steel industry: a comparison of physical and economic indicators," Energy Policy, Elsevier, vol. 25(7-9), pages 727-744.
- Jimenez, Raul & Mercado, Jorge, 2014.
"Energy intensity: A decomposition and counterfactual exercise for Latin American countries,"
Energy Economics, Elsevier, vol. 42(C), pages 161-171.
- Jimenez Mori, Raul Alberto & Mercado Díaz, Jorge Enrique, 2013. "Energy Intensity: A Decomposition and Counterfactual Exercise for Latin American Countries," IDB Publications (Working Papers) 4594, Inter-American Development Bank.
- Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2006. "Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects," Energy Policy, Elsevier, vol. 34(18), pages 3549-3572, December.
- Zhang, Zhong Xiang, 2001.
"Why has the energy intensity fallen in China's industrial sector in the 1990s?: the relative importance of structural change and intensity change,"
CDS Research Reports
200111, University of Groningen, Centre for Development Studies (CDS).
- Zhang, Zhong Xiang, 2001. "Why has the energy intensity fallen in China's industrial sector in the 1990s? : the relative importance of structural change and intensity change," CCSO Working Papers 200105, University of Groningen, CCSO Centre for Economic Research.
- Zhang, ZhongXiang, 2003.
"Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change,"
Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
- Zhang, ZhongXiang, 2001. "Why did the energy intensity fall in China's industrial sector in the 1990s? the relative importance of structural change and intensity change," MPRA Paper 13149, University Library of Munich, Germany.
- C. Seri & A. de Juan Fernandez, 2021. "The relationship between economic growth and environment. Testing the EKC hypothesis for Latin American countries," Papers 2105.11405, arXiv.org.
- Mehmet Balcilar & Firat Emir, 2018. "The Dynamics of Energy Intensity Convergence in the EU-28 Countries," Working Papers 15-37, Eastern Mediterranean University, Department of Economics.
- Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
- Brian Chi-ang Lin & Siqi Zheng & Maximilian Auffhammer & Weizeng Sun & Jianfeng Wu & Siqi Zheng, 2016. "The Decomposition And Dynamics Of Industrial Carbon Dioxide Emissions For 287 Chinese Cities In 1998–2009," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 460-481, July.
- Zhi Li & Lu Lv & Zuo Zhang, 2022. "Research on the Characteristics and Influencing Factors of Chinese Urban Households’ Electricity Consumption Efficiency," Energies, MDPI, vol. 15(20), pages 1-15, October.
- Wu, Yanrui, 2012.
"Energy intensity and its determinants in China's regional economies,"
Energy Policy, Elsevier, vol. 41(C), pages 703-711.
- Yanrui Wu, 2011. "Energy Intensity and its Determinants in China's Regional Economies," Economics Discussion / Working Papers 11-25, The University of Western Australia, Department of Economics.
- Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
- Inglesi-Lotz, Roula & Blignaut, James N., 2011.
"South Africa’s electricity consumption: A sectoral decomposition analysis,"
Applied Energy, Elsevier, vol. 88(12), pages 4779-4784.
- Roula Inglesi-Lotz & James Blignaut, 2011. "South Africa's Electricity Consumption: A Sectoral Decomposition Analysis," Working Papers 201105, University of Pretoria, Department of Economics.
- Auffhammer, Maximilian & Carson, Richard T., 2008.
"Forecasting the path of China's CO2 emissions using province-level information,"
Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
- Auffhammer, Maximilian & Carson, Richard T., 2007. "Forecasting the Path of China's CO2 Emissions Using Province Level Information," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6d28j8rg, Department of Agricultural & Resource Economics, UC Berkeley.
- Zha, DongLan & Zhou, DeQun & Ding, Ning, 2012. "The determinants of aggregated electricity intensity in China," Applied Energy, Elsevier, vol. 97(C), pages 150-156.
- Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
- Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
- repec:dgr:rugccs:200105 is not listed on IDEAS
- Chenyu Dai & Fengliang Liu, 2023. "Impact of Energy Productivity and Industrial Structural Change on Energy Intensity in China: Analysis Based on Provincial Panel Data," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
- Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
- Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
- Akkemik, K. Ali & Göksal, Koray & Li, Jia, 2012. "Energy consumption and income in Chinese provinces: Heterogeneous panel causality analysis," Applied Energy, Elsevier, vol. 99(C), pages 445-454.
- Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
- Darío Serrano-Puente, 2021. "Are we moving towards an energy-efficient low-carbon economy? An input-output LMDI decomposition of CO2 emissions for Spain and the EU28," Working Papers 2104, Banco de España.
- Deliang Pang & Hongwei Su, 2017. "Determinants of energy intensity in Chinese provinces," Energy & Environment, , vol. 28(4), pages 451-467, June.
- Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
- Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
- Ludovico Alcorta & Morgan Bazilian & Giuseppe De Simone & Ascha Pedersen, 2012. "Return on Investment from Industrial Energy Efficiency: Evidence from Developing Countries," Working Papers 2012.35, Fondazione Eni Enrico Mattei.
- Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng & Wu, Junlong, 2009. "Research on the energy-saving effect of energy policies in China: 1982-2006," Energy Policy, Elsevier, vol. 37(7), pages 2475-2480, July.
- Bjerregaard, Casper & Møller, Niels Framroze, 2022. "The influence of electricity prices on saving electricity in production: Automated multivariate time-series analyses for 99 Danish trades and industries," Energy Economics, Elsevier, vol. 107(C).
- Ke, Jing & Price, Lynn & Ohshita, Stephanie & Fridley, David & Khanna, Nina Zheng & Zhou, Nan & Levine, Mark, 2012. "China's industrial energy consumption trends and impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects," Energy Policy, Elsevier, vol. 50(C), pages 562-569.
- Farla, Jacco & Cuelenaere11, Rob & Blok, Kornelis, 1998. "Energy efficiency and structural change in the Netherlands, 1980-1990," Energy Economics, Elsevier, vol. 20(1), pages 1-28, February.
- Auffhammer, Maximilian & Carson, Richard T., 2006. "Forecasting the Path of China's CO2 Emissions: Offsetting Kyoto - and Then Some," CUDARE Working Papers 7197, University of California, Berkeley, Department of Agricultural and Resource Economics.
- Juan Qian & Ruibing Ji, 2022. "Impact of Energy-Biased Technological Progress on Inclusive Green Growth," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
- Ma, Hengyun & Oxley, Les & Gibson, John, 2010.
"China's energy economy: A survey of the literature,"
Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
- Hengyun Ma & Les Oxley, 2009. "China’s Energy Economy: A Survey of the Literature," Working Papers in Economics 09/02, University of Canterbury, Department of Economics and Finance.
- Dilawar Khan & Muhammad Nouman & Arif Ullah, 2023. "Assessing the impact of technological innovation on technically derived energy efficiency: a multivariate co-integration analysis of the agricultural sector in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3723-3745, April.
- Zhicheng, Chen & Porter, Robin, 2000. "Energy management and environmental awareness in China's enterprises," Energy Policy, Elsevier, vol. 28(1), pages 49-63, January.
- Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.
- Zhang, Yang & Li, Siyu & Wang, Xiao & Wu, Weiping, 2023. "Research on human capital and energy development caused by decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
- C. Seri & A. de Juan Fernández, 2023. "CO2 emissions and income growth in Latin America: long-term patterns and determinants," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4491-4524, May.
- Wei Zhang & Jing Cheng & Xuemeng Liu & Zhangrong Zhu, 2023. "Heterogeneous industrial agglomeration, its coordinated development and total factor energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5511-5537, June.
- Ming-Ming Zhao & Rongrong Li, 2018. "Decoupling and decomposition analysis of carbon emissions from economic output in Chinese Guangdong Province: A sector perspective," Energy & Environment, , vol. 29(4), pages 543-555, June.
- Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
- Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
- Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
- Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
- Amsden, Alice H. & Dongyi Liu & Xiaoming Zhang, 1996. "China's macroeconomy, environment, and alternative transition model," World Development, Elsevier, vol. 24(2), pages 273-286, February.
- Lin, Boqiang & Long, Houyin, 2016. "Emissions reduction in China׳s chemical industry – Based on LMDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1348-1355.
- Wang, Zilong & Wang, Xinbin, 2022. "Research on the impact of green finance on energy efficiency in different regions of China based on the DEA-Tobit model," Resources Policy, Elsevier, vol. 77(C).
- Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
- Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
- Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
- Gustavo A. Marrero & Francisco J. Ramos-Real, 2013. "Activity Sectors and Energy Intensity: Decomposition Analysis and Policy Implications for European Countries (1991–2005)," Energies, MDPI, vol. 6(5), pages 1-20, May.
- Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
- Wang, Chunhua, 2011. "Sources of energy productivity growth and its distribution dynamics in China," Resource and Energy Economics, Elsevier, vol. 33(1), pages 279-292, January.
- Sinton, Jonathan E & Levine, Mark D & Qingyi, Wang, 1998. "Energy efficiency in China: accomplishments and challenges," Energy Policy, Elsevier, vol. 26(11), pages 813-829, September.
- François Lescaroux & Valérie Mignon, 2009. "Measuring The Effects Of Oil Prices On China'S Economy: A Factor‐Augmented Vector Autoregressive Approach," Pacific Economic Review, Wiley Blackwell, vol. 14(3), pages 410-425, August.
- Auffhammer, Maximilian & Carson, Richard T. & Garin-Munoz, Teresa, 2004. "Forecasting China's Carbon Dioxide Emissions: A Provincial Approach," CUDARE Working Papers 25109, University of California, Berkeley, Department of Agricultural and Resource Economics.
- Lei Jin & Keran Duan & Xu Tang, 2018. "What Is the Relationship between Technological Innovation and Energy Consumption? Empirical Analysis Based on Provincial Panel Data from China," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
- Victor Manuel Ferreira Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
- Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
- Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
- Zhang, Haiyan & Lahr, Michael L., 2014. "China's energy consumption change from 1987 to 2007: A multi-regional structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 682-693.
- Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
- Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
- repec:dgr:rugcds:200111 is not listed on IDEAS
- Julien Allaire, 2006. "Industrie lourde et intensité énergétique de la croissance chinoise," Post-Print halshs-00007931, HAL.
- Worrell, Ernst & van Berkel, Rene & Fengqi, Zhou & Menke, Christoph & Schaeffer, Roberto & O. Williams, Robert, 2001. "Technology transfer of energy efficient technologies in industry: a review of trends and policy issues," Energy Policy, Elsevier, vol. 29(1), pages 29-43, January.
- Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
- Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
- Jianting Lin & Changxin Xu, 2017. "The Impact of Environmental Regulation on Total Factor Energy Efficiency: A Cross-Region Analysis in China," Energies, MDPI, vol. 10(10), pages 1-17, October.
- Zha, Donglan & Zhou, Dequn & Ding, Ning, 2009. "The contribution degree of sub-sectors to structure effect and intensity effects on industry energy intensity in China from 1993 to 2003," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 895-902, May.
- Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
- Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
- An, Hui & Xu, Jianjun & Ma, Xuejiao, 2020. "Does technological progress and industrial structure reduce electricity consumption? Evidence from spatial and heterogeneity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 206-220.
- Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
- Chen, Xiude & Qin, Quande & Wei, Y.-M., 2016. "Energy productivity and Chinese local officials’ promotions: Evidence from provincial governors," Energy Policy, Elsevier, vol. 95(C), pages 103-112.
- Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "The energy efficiency advantage of foreign-invested enterprises in China and the role of structural differences," China Economic Review, Elsevier, vol. 34(C), pages 225-235.
- Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
- Moutinho, Victor & Robaina-Alves, Margarita & Mota, Jorge, 2014. "Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 438-449.