IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v34y2012i1p307-315.html
   My bibliography  Save this item

Forecasting hourly electricity prices using ARMAX–GARCH models: An application to MISO hubs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Birge, John R. & Hortaçsu, Ali & Mercadal, Ignacia & Pavlin, J. Michael, 2018. "Limits to arbitrage in electricity markets: A case study of MISO," Energy Economics, Elsevier, vol. 75(C), pages 518-533.
  2. Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
  3. Miaomiao Niu & Guohao Li, 2022. "The Impact of Climate Change Risks on Residential Consumption in China: Evidence from ARMAX Modeling and Granger Causality Analysis," IJERPH, MDPI, vol. 19(19), pages 1-15, September.
  4. Aurelia Rybak & Aleksandra Rybak & Jarosław Joostberens & Spas D. Kolev, 2024. "Key SDG7 Factors Shaping the Future of Clean Coal Technologies: Analysis of Trends and Prospects in Poland," Energies, MDPI, vol. 17(16), pages 1-15, August.
  5. Deman, Laureen & Boucher, Quentin, 2023. "Impact of renewable energy generation on power reserve energy demand," Energy Economics, Elsevier, vol. 128(C).
  6. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
  7. Jeremy Lin & Alessio Saretto & Anastasia Shcherbakova, 2024. "What Fuels the Volatility of Electricity Prices?," Working Papers 2408, Federal Reserve Bank of Dallas.
  8. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
  9. Qu, Hui & Chen, Wei & Niu, Mengyi & Li, Xindan, 2016. "Forecasting realized volatility in electricity markets using logistic smooth transition heterogeneous autoregressive models," Energy Economics, Elsevier, vol. 54(C), pages 68-76.
  10. Ping Jiang & Feng Liu & Yiliao Song, 2016. "A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection," Energies, MDPI, vol. 9(8), pages 1-27, August.
  11. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
  12. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
  13. Erdogdu, Erkan, 2016. "Asymmetric volatility in European day-ahead power markets: A comparative microeconomic analysis," Energy Economics, Elsevier, vol. 56(C), pages 398-409.
  14. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Rai, Alan & Konstandatos, Otto, 2022. "Large-scale and rooftop solar generation in the NEM: A tale of two renewables strategies," Energy Economics, Elsevier, vol. 115(C).
  15. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
  16. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
  17. Joanna Janczura & Andrzej Puć, 2023. "ARX-GARCH Probabilistic Price Forecasts for Diversification of Trade in Electricity Markets—Variance Stabilizing Transformation and Financial Risk-Minimizing Portfolio Allocation," Energies, MDPI, vol. 16(2), pages 1-28, January.
  18. Jorge Barrientos Marín & Mónica Toro Martínez, 2016. "Sobre Los Fundamentales Del Precio De La Energía Eléctrica: Evidencia Empírica Para Colombia," Grupo Microeconomía Aplicada 74, Universidad de Antioquia, Departamento de Economía.
  19. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
  20. Qu, Hui & Duan, Qingling & Niu, Mengyi, 2018. "Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets," Energy Economics, Elsevier, vol. 74(C), pages 767-776.
  21. Jesica Escobar & Alexander Poznyak, 2022. "Robust Parametric Identification for ARMAX Models with Non-Gaussian and Coloured Noise: A Survey," Mathematics, MDPI, vol. 10(8), pages 1-38, April.
  22. Xia, Yuanxing & Xu, Qingshan & Chen, Lu & Du, Pengwei, 2022. "The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review," Applied Energy, Elsevier, vol. 327(C).
  23. Aurelia Rybak & Jarosław Joostberens & Anna Manowska & Joachim Pielot, 2022. "The Impact of Environmental Taxes on the Level of Greenhouse Gas Emissions in Poland and Sweden," Energies, MDPI, vol. 15(12), pages 1-15, June.
  24. Ama Agyeiwaa Abrokwah, 2018. "Price and Volatility Spillovers in the Electricity Reliability Council of Texas Day-Ahead Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 322-330.
  25. Papaioannou, George P. & Dikaiakos, Christos & Dagoumas, Athanasios S. & Dramountanis, Anargyros & Papaioannou, Panagiotis G., 2018. "Detecting the impact of fundamentals and regulatory reforms on the Greek wholesale electricity market using a SARMAX/GARCH model," Energy, Elsevier, vol. 142(C), pages 1083-1103.
  26. S. Vijayalakshmi & G. P. Girish, 2015. "Artificial Neural Networks for Spot Electricity Price Forecasting: A Review," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1092-1097.
  27. Bello, Antonio & Reneses, Javier & Muñoz, Antonio & Delgadillo, Andrés, 2016. "Probabilistic forecasting of hourly electricity prices in the medium-term using spatial interpolation techniques," International Journal of Forecasting, Elsevier, vol. 32(3), pages 966-980.
  28. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
  29. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
  30. Shadi Tehrani & Jesús Juan & Eduardo Caro, 2022. "Electricity Spot Price Modeling and Forecasting in European Markets," Energies, MDPI, vol. 15(16), pages 1-23, August.
  31. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Energy Economics, Elsevier, vol. 51(C), pages 430-444.
  32. Martina Assereto & Julie Byrne, 2020. "The Implications of Policy Uncertainty on Solar Photovoltaic Investment," Energies, MDPI, vol. 13(23), pages 1-20, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.