IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p618-d75382.html
   My bibliography  Save this article

A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection

Author

Listed:
  • Ping Jiang

    (School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China)

  • Feng Liu

    (School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China)

  • Yiliao Song

    (School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China)

Abstract

The day-ahead electricity market is closely related to other commodity markets such as the fuel and emission markets and is increasingly playing a significant role in human life. Thus, in the electricity markets, accurate electricity price forecasting plays significant role for power producers and consumers. Although many studies developing and proposing highly accurate forecasting models exist in the literature, there have been few investigations on improving the forecasting effectiveness of electricity price from the perspective of reducing the volatility of data with satisfactory accuracy. Based on reducing the volatility of the electricity price and the forecasting nature of the radial basis function network (RBFN), this paper successfully develops a two-stage model to forecast the day-ahead electricity price, of which the first stage is particle swarm optimization (PSO)-core mapping (CM) with self-organizing-map and fuzzy set (PCMwSF), and the second stage is selection rule (SR). The PCMwSF stage applies CM, fuzzy set and optimized weights to obtain the future price, and the SR stage is inspired by the forecasting nature of RBFN and effectively selects the best forecast during the test period. The proposed model, i.e., CM-PCMwSF-SR, not only overcomes the difficulty of reducing the high volatility of the electricity price but also leads to a superior forecasting effectiveness than benchmarks.

Suggested Citation

  • Ping Jiang & Feng Liu & Yiliao Song, 2016. "A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection," Energies, MDPI, vol. 9(8), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:618-:d:75382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying-Yi Hong & Ching-Ping Wu, 2012. "Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network," Energies, MDPI, vol. 5(11), pages 1-15, November.
    2. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.
    3. Dudek, Grzegorz, 2016. "Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1057-1060.
    4. Claudio Monteiro & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado, 2015. "Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market," Energies, MDPI, vol. 8(9), pages 1-23, September.
    5. Hickey, Emily & Loomis, David G. & Mohammadi, Hassan, 2012. "Forecasting hourly electricity prices using ARMAX–GARCH models: An application to MISO hubs," Energy Economics, Elsevier, vol. 34(1), pages 307-315.
    6. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    7. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    8. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    9. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    10. repec:qut:auncer:2012_5 is not listed on IDEAS
    11. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    12. Tryggvi Jónsson & Pierre Pinson & Henrik Aa. Nielsen & Henrik Madsen, 2014. "Exponential Smoothing Approaches for Prediction in Real-Time Electricity Markets," Energies, MDPI, vol. 7(6), pages 1-23, June.
    13. Marin Cerjan & Marin Matijaš & Marko Delimar, 2014. "Dynamic Hybrid Model for Short-Term Electricity Price Forecasting," Energies, MDPI, vol. 7(5), pages 1-15, May.
    14. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    15. Khosravi, Abbas & Nahavandi, Saeid & Creighton, Doug, 2013. "Quantifying uncertainties of neural network-based electricity price forecasts," Applied Energy, Elsevier, vol. 112(C), pages 120-129.
    16. He, Kaijian & Xu, Yang & Zou, Yingchao & Tang, Ling, 2015. "Electricity price forecasts using a Curvelet denoising based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 1-9.
    17. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derek W. Bunn & Angelica Gianfreda & Stefan Kermer, 2018. "A Trading-Based Evaluation of Density Forecasts in a Real-Time Electricity Market," Energies, MDPI, vol. 11(10), pages 1-13, October.
    2. Liu, Yanxin & Li, Huajiao & Guan, Jianhe & Liu, Xueyong & Guan, Qing & Sun, Qingru, 2019. "Influence of different factors on prices of upstream, middle and downstream products in China's whole steel industry chain: Based on Adaptive Neural Fuzzy Inference System," Resources Policy, Elsevier, vol. 60(C), pages 134-142.
    3. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    4. Javier Contreras, 2017. "Forecasting Models of Electricity Prices," Energies, MDPI, vol. 10(2), pages 1-2, January.
    5. Nguyen Gia Minh Thao & Kenko Uchida, 2018. "An Improved Interval Fuzzy Modeling Method: Applications to the Estimation of Photovoltaic/Wind/Battery Power in Renewable Energy Systems," Energies, MDPI, vol. 11(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    2. Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
    3. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    4. Bartosz Uniejewski & Jakub Nowotarski & Rafał Weron, 2016. "Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 9(8), pages 1-22, August.
    5. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    6. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    7. Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
    8. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    9. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Energy Economics, Elsevier, vol. 51(C), pages 430-444.
    10. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    11. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    12. Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
    13. Agrawal, Rahul Kumar & Muchahary, Frankle & Tripathi, Madan Mohan, 2019. "Ensemble of relevance vector machines and boosted trees for electricity price forecasting," Applied Energy, Elsevier, vol. 250(C), pages 540-548.
    14. Florian Ziel & Rafal Weron, 2016. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate models," HSC Research Reports HSC/16/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    15. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    16. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    17. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    18. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
    19. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    20. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:618-:d:75382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.