IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp1083-1103.html
   My bibliography  Save this article

Detecting the impact of fundamentals and regulatory reforms on the Greek wholesale electricity market using a SARMAX/GARCH model

Author

Listed:
  • Papaioannou, George P.
  • Dikaiakos, Christos
  • Dagoumas, Athanasios S.
  • Dramountanis, Anargyros
  • Papaioannou, Panagiotis G.

Abstract

This work aims to detect the impact of fundamentals and regulatory reforms on the Greek Wholesale Electricity Market, applying SARMAX/GARCH models. The System Marginal Price (SMP) is considered a stochastic, nonlinear process, reflecting not only the effects of endogenous/fundamental market factors but also the effects of exogenous variables including regulatory reforms, which also affect the market dynamics. To capture the dynamics of the conditional mean and volatility of SMP, a number of SARMAX/GARCH models have been estimated using as regressors an extensive set of fundamental factors in the Greek Electricity Market (GEM), as well as dummy variables that mimic the history of Regulator's interventions. The best-found model captures adequately the dependency of the spot price to the regulatory reforms. The findings reassure the typical sign and the magnitude of the effect of fundamentals, and detects successfully the impacts of the reforms. The most interesting finding is that the GEM does not exhibit asymmetries or leverage effect, in the volatility of its wholesale price, as the most European markets do. The outcome of this paper can be useful to a wide variety of GEM's participants and specifically to the decision makers in GEM.

Suggested Citation

  • Papaioannou, George P. & Dikaiakos, Christos & Dagoumas, Athanasios S. & Dramountanis, Anargyros & Papaioannou, Panagiotis G., 2018. "Detecting the impact of fundamentals and regulatory reforms on the Greek wholesale electricity market using a SARMAX/GARCH model," Energy, Elsevier, vol. 142(C), pages 1083-1103.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:1083-1103
    DOI: 10.1016/j.energy.2017.10.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, W.A. & De Lima, P.J.F., 1995. "Nonlinear Time Series, Complexity Theory, and Finance," Working papers 9523, Wisconsin Madison - Social Systems.
    2. Angelica Gianfreda, 2010. "Volatility and Volume Effects in European Electricity Spot Markets," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 47-63, February.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    6. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    7. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    8. Robert F. Engle & Magdalena E. Sokalska, 0. "Forecasting intraday volatility in the US equity market. Multiplicative component GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 10(1), pages 54-83.
    9. Apostolos Serletis, 2007. "Quantitative and Empirical Analysis of Energy Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6352, October.
    10. Kalantzis, Fotis & Sakellaris, Kostis, 2012. "Investigating the Impact of the Greek Electricity Market Reforms on its Day-Ahead Market Prices," MPRA Paper 37794, University Library of Munich, Germany.
    11. Erdogdu, Erkan, 2016. "Asymmetric volatility in European day-ahead power markets: A comparative microeconomic analysis," Energy Economics, Elsevier, vol. 56(C), pages 398-409.
    12. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    13. Hickey, Emily & Loomis, David G. & Mohammadi, Hassan, 2012. "Forecasting hourly electricity prices using ARMAX–GARCH models: An application to MISO hubs," Energy Economics, Elsevier, vol. 34(1), pages 307-315.
    14. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    15. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2007. "Deregulated Wholesale Electricity Prices in Italy: An Empirical Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(4), pages 415-432, November.
    16. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    17. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    18. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    19. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    20. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    21. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    22. Lester Hadsell & Hany A. Shawky, 2006. "Electricity Price Volatility and the Marginal Cost of Congestion: An Empirical Study of Peak Hours on the NYISO Market, 2001-2004," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 157-180.
    23. repec:kap:iaecre:v:13:y:2007:i:4:p:415-432 is not listed on IDEAS
    24. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
    25. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    26. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    27. Petrella, Andrea & Sapio, Alessandro, 2012. "Assessing the impact of forward trading, retail liberalization, and white certificates on the Italian wholesale electricity prices," Energy Policy, Elsevier, vol. 40(C), pages 307-317.
    28. Buhlmann, Peter & McNeil, Alexander J., 2002. "An algorithm for nonparametric GARCH modelling," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 665-683, October.
    29. George P. Papaioannou & Christos Dikaiakos & George Evangelidis & Panagiotis G. Papaioannou & Dionysios S. Georgiadis, 2015. "Co-Movement Analysis of Italian and Greek Electricity Market Wholesale Prices by Using a Wavelet Approach," Energies, MDPI, vol. 8(10), pages 1-30, October.
    30. Lin, Sharon Xiaowen & Tamvakis, Michael N., 2001. "Spillover effects in energy futures markets," Energy Economics, Elsevier, vol. 23(1), pages 43-56, January.
    31. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    32. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    33. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
    34. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    35. Theodorou, Petros & Karyampas, Dimitrios, 2008. "Modeling the return and volatility of the Greek electricity marginal system price," Energy Policy, Elsevier, vol. 36(7), pages 2601-2609, July.
    36. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Pereira Macedo & António Cardoso Marques & Olivier Damette, 2023. "Challenges in Assessing the Behaviour of Nodal Electricity Prices in Insular Electricity Markets: The Case of New Zealand," Economies, MDPI, vol. 11(6), pages 1-19, June.
    2. George P. Papaioannou & Christos Dikaiakos & Akylas C. Stratigakos & Panos C. Papageorgiou & Konstantinos F. Krommydas, 2019. "Testing the Efficiency of Electricity Markets Using a New Composite Measure Based on Nonlinear TS Tools," Energies, MDPI, vol. 12(4), pages 1-30, February.
    3. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    4. Maniatis, Georgios I. & Milonas, Nikolaos T., 2022. "The impact of wind and solar power generation on the level and volatility of wholesale electricity prices in Greece," Energy Policy, Elsevier, vol. 170(C).
    5. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2021. "The Merit-Order Effect on the Swedish bidding zone with the highest electricity flow in the Elspot market," Energy Economics, Elsevier, vol. 102(C).
    6. Michail I. Seitaridis & Nikolaos S. Thomaidis & Pandelis N. Biskas, 2021. "Fundamental Responsiveness in European Electricity Prices," Energies, MDPI, vol. 14(22), pages 1-14, November.
    7. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    8. Filippos Ioannidis & Kyriaki Kosmidou & Kostas Andriosopoulos & Antigoni Everkiadi, 2021. "Assessment of the Target Model Implementation in the Wholesale Electricity Market of Greece," Energies, MDPI, vol. 14(19), pages 1-22, October.
    9. Thakur, Jagruti & Chakraborty, Basab, 2018. "Impact of increased solar penetration on bill savings of net metered residential consumers in India," Energy, Elsevier, vol. 162(C), pages 776-786.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdogdu, Erkan, 2016. "Asymmetric volatility in European day-ahead power markets: A comparative microeconomic analysis," Energy Economics, Elsevier, vol. 56(C), pages 398-409.
    2. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    3. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Martina Assereto & Julie Byrne, 2020. "The Implications of Policy Uncertainty on Solar Photovoltaic Investment," Energies, MDPI, vol. 13(23), pages 1-20, November.
    6. Le Pen, Yannick & Sévi, Benoît, 2010. "Volatility transmission and volatility impulse response functions in European electricity forward markets," Energy Economics, Elsevier, vol. 32(4), pages 758-770, July.
    7. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    8. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
    9. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    10. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
    12. Qu, Hui & Duan, Qingling & Niu, Mengyi, 2018. "Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets," Energy Economics, Elsevier, vol. 74(C), pages 767-776.
    13. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    14. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    15. Petrella, Andrea & Sapio, Alessandro, 2012. "Assessing the impact of forward trading, retail liberalization, and white certificates on the Italian wholesale electricity prices," Energy Policy, Elsevier, vol. 40(C), pages 307-317.
    16. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
    17. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    18. Seulki Chung, 2024. "Modelling and Forecasting Energy Market Volatility Using GARCH and Machine Learning Approach," Papers 2405.19849, arXiv.org.
    19. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    20. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:1083-1103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.