IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v69y1993i2p210-220.html
   My bibliography  Save this item

A multicriteria evaluation of methods for obtaining weights from ratio-scale matrices

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bojan Srđević & Zorica Srđević & Milica Ilić & Senka Ždero, 2021. "Group model for evaluating the importance of Ramsar sites in Vojvodina Province of Serbia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10892-10909, July.
  2. Wade D. Cook & Tal Raviv & Alan J. Richardson, 2010. "Aggregating Incomplete Lists of Journal Rankings: An Application to Academic Accounting Journals," Accounting Perspectives, John Wiley & Sons, vol. 9(3), pages 217-235, September.
  3. A. M. Alamdari & Y. Jabarzadeh & B. Adams & D. Samson & S. Khanmohammadi, 2023. "An analytic network process model to prioritize supply chain risks in green residential megaprojects," Operations Management Research, Springer, vol. 16(1), pages 141-163, March.
  4. Laila Messaoudi & Belaid Aouni & Abdelwaheb Rebai, 2017. "Fuzzy chance-constrained goal programming model for multi-attribute financial portfolio selection," Annals of Operations Research, Springer, vol. 251(1), pages 193-204, April.
  5. Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.
  6. Hovanov, Nikolai V. & Kolari, James W. & Sokolov, Mikhail V., 2008. "Deriving weights from general pairwise comparison matrices," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 205-220, March.
  7. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2016. "The precise consistency consensus matrix in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 245(1), pages 245-259, October.
  8. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
  9. MacKay, David B. & Bowen, William M. & Zinnes, Joseph L., 1996. "A Thurstonian view of the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 89(2), pages 427-444, March.
  10. Mikhailov, L., 2002. "Fuzzy analytical approach to partnership selection in formation of virtual enterprises," Omega, Elsevier, vol. 30(5), pages 393-401, October.
  11. Ágoston, Kolos Csaba & Csató, László, 2024. "A lexicographically optimal completion for pairwise comparison matrices with missing entries," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1078-1086.
  12. Donald G. Saari, 2021. "Seeking consistency with paired comparisons: a systems approach," Theory and Decision, Springer, vol. 91(3), pages 377-402, October.
  13. J. Fülöp & W. Koczkodaj & S. Szarek, 2012. "On some convexity properties of the Least Squares Method for pairwise comparisons matrices without the reciprocity condition," Journal of Global Optimization, Springer, vol. 54(4), pages 689-706, December.
  14. József Temesi, 2011. "Pairwise comparison matrices and the error-free property of the decision maker," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(2), pages 239-249, June.
  15. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2019. "AHP-Group Decision Making Based on Consistency," Mathematics, MDPI, vol. 7(3), pages 1-15, March.
  16. Bozóki, Sándor & Fülöp, János, 2018. "Efficient weight vectors from pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 264(2), pages 419-427.
  17. Faramondi, Luca & Oliva, Gabriele & Setola, Roberto & Bozóki, Sándor, 2023. "Robustness to rank reversal in pairwise comparison matrices based on uncertainty bounds," European Journal of Operational Research, Elsevier, vol. 304(2), pages 676-688.
  18. Kou, Gang & Lin, Changsheng, 2014. "A cosine maximization method for the priority vector derivation in AHP," European Journal of Operational Research, Elsevier, vol. 235(1), pages 225-232.
  19. Kevin Kam Fung Yuen, 2014. "The Least Penalty Optimization Prioritization Operators for the Analytic Hierarchy Process: A Revised Case of Medical Decision Problem of Organ Transplantation," Systems Engineering, John Wiley & Sons, vol. 17(4), pages 442-461, December.
  20. Gass, S. I. & Rapcsak, T., 2004. "Singular value decomposition in AHP," European Journal of Operational Research, Elsevier, vol. 154(3), pages 573-584, May.
  21. Liu, Fang & Zou, Shu-Cai & Li, Qing, 2020. "Deriving priorities from pairwise comparison matrices with a novel consistency index," Applied Mathematics and Computation, Elsevier, vol. 374(C).
  22. Elvio MATTIOLI & Giuseppe RICCIARDO LAMONICA, 2004. "An Empirical Analysis of Methods to Construct Indices for Consistent Multiple Comparisons," Working Papers 219, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
  23. D F Jones & S J Mardle, 2004. "A distance-metric methodology for the derivation of weights from a pairwise comparison matrix," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 869-875, August.
  24. Zorica Srđević & Bojan Srđević & Kosana Suvočarev & Laslo Galamboš, 2020. "Hybrid Constructed Wetland Selection as a Group Decision-Making Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 295-310, January.
  25. Alessio Ishizaka & Markus Lusti, 2006. "How to derive priorities in AHP: a comparative study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(4), pages 387-400, December.
  26. Abel, Edward & Mikhailov, Ludmil & Keane, John, 2018. "Inconsistency reduction in decision making via multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 267(1), pages 212-226.
  27. Giuseppe Crapa & Maria Elena Latino & Paolo Roma, 2024. "The performance of green communication across social media: Evidence from large‐scale retail industry in Italy," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(1), pages 493-513, January.
  28. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
  29. Johanna Vásquez & Sergio Botero, 2020. "Hybrid Methodology to Improve Health Status Utility Values Derivation Using EQ-5D-5L and Advanced Multi-Criteria Techniques," IJERPH, MDPI, vol. 17(4), pages 1-18, February.
  30. Joseph Gogodze, 2019. "Innovative advantages ranking. A new approach," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 5-15.
  31. Hartvigsen, David, 2005. "Representing the strengths and directions of pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 163(2), pages 357-369, June.
  32. Yahya, Salleh & Kingsman, Brian, 2002. "Modelling a multi-objective allocation problem in a government sponsored entrepreneur development programme," European Journal of Operational Research, Elsevier, vol. 136(2), pages 430-448, January.
  33. Huseyin Kocak & Atalay Caglar & Gulin Zeynep Oztas, 2018. "Euclidean Best–Worst Method and Its Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1587-1605, September.
  34. Siraj, S. & Mikhailov, L. & Keane, J.A., 2012. "Preference elicitation from inconsistent judgments using multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 220(2), pages 461-471.
  35. C-C Lin, 2006. "An enhanced goal programming method for generating priority vectors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(12), pages 1491-1496, December.
  36. Sándor Bozóki, 2008. "Solution of the least squares method problem of pairwise comparison matrices," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(4), pages 345-358, December.
  37. Changsheng Lin & Gang Kou & Yi Peng & Fawaz E. Alsaadi, 2022. "Aggregation of the nearest consistency matrices with the acceptable consensus in AHP-GDM," Annals of Operations Research, Springer, vol. 316(1), pages 179-195, September.
  38. András Farkas & Pál Rózsa, 2013. "A recursive least-squares algorithm for pairwise comparison matrices," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(4), pages 817-843, December.
  39. David Koloseni & Tove Helldin & Vicenç Torra, 2020. "AHP-Like Matrices and Structures—Absolute and Relative Preferences," Mathematics, MDPI, vol. 8(5), pages 1-12, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.